itertools/
combinations.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
use core::array;
use core::borrow::BorrowMut;
use std::fmt;
use std::iter::FusedIterator;

use super::lazy_buffer::LazyBuffer;
use alloc::vec::Vec;

use crate::adaptors::checked_binomial;

/// Iterator for `Vec` valued combinations returned by [`.combinations()`](crate::Itertools::combinations)
pub type Combinations<I> = CombinationsGeneric<I, Vec<usize>>;
/// Iterator for const generic combinations returned by [`.array_combinations()`](crate::Itertools::array_combinations)
pub type ArrayCombinations<I, const K: usize> = CombinationsGeneric<I, [usize; K]>;

/// Create a new `Combinations` from a clonable iterator.
pub fn combinations<I: Iterator>(iter: I, k: usize) -> Combinations<I>
where
    I::Item: Clone,
{
    Combinations::new(iter, (0..k).collect())
}

/// Create a new `ArrayCombinations` from a clonable iterator.
pub fn array_combinations<I: Iterator, const K: usize>(iter: I) -> ArrayCombinations<I, K>
where
    I::Item: Clone,
{
    ArrayCombinations::new(iter, array::from_fn(|i| i))
}

/// An iterator to iterate through all the `k`-length combinations in an iterator.
///
/// See [`.combinations()`](crate::Itertools::combinations) and [`.array_combinations()`](crate::Itertools::array_combinations) for more information.
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
pub struct CombinationsGeneric<I: Iterator, Idx> {
    indices: Idx,
    pool: LazyBuffer<I>,
    first: bool,
}

/// A type holding indices of elements in a pool or buffer of items from an inner iterator
/// and used to pick out different combinations in a generic way.
pub trait PoolIndex<T>: BorrowMut<[usize]> {
    type Item;

    fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Self::Item
    where
        T: Clone;

    fn len(&self) -> usize {
        self.borrow().len()
    }
}

impl<T> PoolIndex<T> for Vec<usize> {
    type Item = Vec<T>;

    fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Vec<T>
    where
        T: Clone,
    {
        pool.get_at(self)
    }
}

impl<T, const K: usize> PoolIndex<T> for [usize; K] {
    type Item = [T; K];

    fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> [T; K]
    where
        T: Clone,
    {
        pool.get_array(*self)
    }
}

impl<I, Idx> Clone for CombinationsGeneric<I, Idx>
where
    I: Iterator + Clone,
    I::Item: Clone,
    Idx: Clone,
{
    clone_fields!(indices, pool, first);
}

impl<I, Idx> fmt::Debug for CombinationsGeneric<I, Idx>
where
    I: Iterator + fmt::Debug,
    I::Item: fmt::Debug,
    Idx: fmt::Debug,
{
    debug_fmt_fields!(Combinations, indices, pool, first);
}

impl<I: Iterator, Idx: PoolIndex<I::Item>> CombinationsGeneric<I, Idx> {
    /// Constructor with arguments the inner iterator and the initial state for the indices.
    fn new(iter: I, indices: Idx) -> Self {
        Self {
            indices,
            pool: LazyBuffer::new(iter),
            first: true,
        }
    }

    /// Returns the length of a combination produced by this iterator.
    #[inline]
    pub fn k(&self) -> usize {
        self.indices.len()
    }

    /// Returns the (current) length of the pool from which combination elements are
    /// selected. This value can change between invocations of [`next`](Combinations::next).
    #[inline]
    pub fn n(&self) -> usize {
        self.pool.len()
    }

    /// Returns a reference to the source pool.
    #[inline]
    pub(crate) fn src(&self) -> &LazyBuffer<I> {
        &self.pool
    }

    /// Return the length of the inner iterator and the count of remaining combinations.
    pub(crate) fn n_and_count(self) -> (usize, usize) {
        let Self {
            indices,
            pool,
            first,
        } = self;
        let n = pool.count();
        (n, remaining_for(n, first, indices.borrow()).unwrap())
    }

    /// Initialises the iterator by filling a buffer with elements from the
    /// iterator. Returns true if there are no combinations, false otherwise.
    fn init(&mut self) -> bool {
        self.pool.prefill(self.k());
        let done = self.k() > self.n();
        if !done {
            self.first = false;
        }

        done
    }

    /// Increments indices representing the combination to advance to the next
    /// (in lexicographic order by increasing sequence) combination. For example
    /// if we have n=4 & k=2 then `[0, 1] -> [0, 2] -> [0, 3] -> [1, 2] -> ...`
    ///
    /// Returns true if we've run out of combinations, false otherwise.
    fn increment_indices(&mut self) -> bool {
        // Borrow once instead of noise each time it's indexed
        let indices = self.indices.borrow_mut();

        if indices.is_empty() {
            return true; // Done
        }
        // Scan from the end, looking for an index to increment
        let mut i: usize = indices.len() - 1;

        // Check if we need to consume more from the iterator
        if indices[i] == self.pool.len() - 1 {
            self.pool.get_next(); // may change pool size
        }

        while indices[i] == i + self.pool.len() - indices.len() {
            if i > 0 {
                i -= 1;
            } else {
                // Reached the last combination
                return true;
            }
        }

        // Increment index, and reset the ones to its right
        indices[i] += 1;
        for j in i + 1..indices.len() {
            indices[j] = indices[j - 1] + 1;
        }
        // If we've made it this far, we haven't run out of combos
        false
    }

    /// Returns the n-th item or the number of successful steps.
    pub(crate) fn try_nth(&mut self, n: usize) -> Result<<Self as Iterator>::Item, usize>
    where
        I: Iterator,
        I::Item: Clone,
    {
        let done = if self.first {
            self.init()
        } else {
            self.increment_indices()
        };
        if done {
            return Err(0);
        }
        for i in 0..n {
            if self.increment_indices() {
                return Err(i + 1);
            }
        }
        Ok(self.indices.extract_item(&self.pool))
    }
}

impl<I, Idx> Iterator for CombinationsGeneric<I, Idx>
where
    I: Iterator,
    I::Item: Clone,
    Idx: PoolIndex<I::Item>,
{
    type Item = Idx::Item;
    fn next(&mut self) -> Option<Self::Item> {
        let done = if self.first {
            self.init()
        } else {
            self.increment_indices()
        };

        if done {
            return None;
        }

        Some(self.indices.extract_item(&self.pool))
    }

    fn nth(&mut self, n: usize) -> Option<Self::Item> {
        self.try_nth(n).ok()
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let (mut low, mut upp) = self.pool.size_hint();
        low = remaining_for(low, self.first, self.indices.borrow()).unwrap_or(usize::MAX);
        upp = upp.and_then(|upp| remaining_for(upp, self.first, self.indices.borrow()));
        (low, upp)
    }

    #[inline]
    fn count(self) -> usize {
        self.n_and_count().1
    }
}

impl<I, Idx> FusedIterator for CombinationsGeneric<I, Idx>
where
    I: Iterator,
    I::Item: Clone,
    Idx: PoolIndex<I::Item>,
{
}

impl<I: Iterator> Combinations<I> {
    /// Resets this `Combinations` back to an initial state for combinations of length
    /// `k` over the same pool data source. If `k` is larger than the current length
    /// of the data pool an attempt is made to prefill the pool so that it holds `k`
    /// elements.
    pub(crate) fn reset(&mut self, k: usize) {
        self.first = true;

        if k < self.indices.len() {
            self.indices.truncate(k);
            for i in 0..k {
                self.indices[i] = i;
            }
        } else {
            for i in 0..self.indices.len() {
                self.indices[i] = i;
            }
            self.indices.extend(self.indices.len()..k);
            self.pool.prefill(k);
        }
    }
}

/// For a given size `n`, return the count of remaining combinations or None if it would overflow.
fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> {
    let k = indices.len();
    if n < k {
        Some(0)
    } else if first {
        checked_binomial(n, k)
    } else {
        // https://en.wikipedia.org/wiki/Combinatorial_number_system
        // http://www.site.uottawa.ca/~lucia/courses/5165-09/GenCombObj.pdf

        // The combinations generated after the current one can be counted by counting as follows:
        // - The subsequent combinations that differ in indices[0]:
        //   If subsequent combinations differ in indices[0], then their value for indices[0]
        //   must be at least 1 greater than the current indices[0].
        //   As indices is strictly monotonically sorted, this means we can effectively choose k values
        //   from (n - 1 - indices[0]), leading to binomial(n - 1 - indices[0], k) possibilities.
        // - The subsequent combinations with same indices[0], but differing indices[1]:
        //   Here we can choose k - 1 values from (n - 1 - indices[1]) values,
        //   leading to binomial(n - 1 - indices[1], k - 1) possibilities.
        // - (...)
        // - The subsequent combinations with same indices[0..=i], but differing indices[i]:
        //   Here we can choose k - i values from (n - 1 - indices[i]) values: binomial(n - 1 - indices[i], k - i).
        //   Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients.

        // Below, `n0` resembles indices[i].
        indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| {
            sum.checked_add(checked_binomial(n - 1 - *n0, k - i)?)
        })
    }
}