jiff/civil/
time.rs

1use core::time::Duration as UnsignedDuration;
2
3use crate::{
4    civil::{Date, DateTime},
5    duration::{Duration, SDuration},
6    error::{err, Error, ErrorContext},
7    fmt::{
8        self,
9        temporal::{self, DEFAULT_DATETIME_PARSER},
10    },
11    util::{
12        common::{from_day_nanosecond, to_day_nanosecond},
13        rangeint::{RFrom, RInto, TryRFrom},
14        round::increment,
15        t::{
16            self, CivilDayNanosecond, Hour, Microsecond, Millisecond, Minute,
17            Nanosecond, Second, SubsecNanosecond, C,
18        },
19    },
20    RoundMode, SignedDuration, Span, SpanRound, Unit, Zoned,
21};
22
23/// A representation of civil "wall clock" time.
24///
25/// Conceptually, a `Time` value corresponds to the typical hours and minutes
26/// that you might see on a clock. This type also contains the second and
27/// fractional subsecond (to nanosecond precision) associated with a time.
28///
29/// # Civil time
30///
31/// A `Time` value behaves as if it corresponds precisely to a single
32/// nanosecond within a day, where all days have `86,400` seconds. That is,
33/// any given `Time` value corresponds to a nanosecond in the inclusive range
34/// `[0, 86399999999999]`, where `0` corresponds to `00:00:00.000000000`
35/// ([`Time::MIN`]) and `86399999999999` corresponds to `23:59:59.999999999`
36/// ([`Time::MAX`]). Moreover, in civil time, all hours have the same number of
37/// minutes, all minutes have the same number of seconds and all seconds have
38/// the same number of nanoseconds.
39///
40/// # Parsing and printing
41///
42/// The `Time` type provides convenient trait implementations of
43/// [`std::str::FromStr`] and [`std::fmt::Display`]:
44///
45/// ```
46/// use jiff::civil::Time;
47///
48/// let t: Time = "15:22:45".parse()?;
49/// assert_eq!(t.to_string(), "15:22:45");
50///
51/// # Ok::<(), Box<dyn std::error::Error>>(())
52/// ```
53///
54/// A civil `Time` can also be parsed from something that _contains_ a
55/// time, but with perhaps other data (such as an offset or time zone):
56///
57/// ```
58/// use jiff::civil::Time;
59///
60/// let t: Time = "2024-06-19T15:22:45-04[America/New_York]".parse()?;
61/// assert_eq!(t.to_string(), "15:22:45");
62///
63/// # Ok::<(), Box<dyn std::error::Error>>(())
64/// ```
65///
66/// For more information on the specific format supported, see the
67/// [`fmt::temporal`](crate::fmt::temporal) module documentation.
68///
69/// # Default value
70///
71/// For convenience, this type implements the `Default` trait. Its default
72/// value is midnight. i.e., `00:00:00.000000000`.
73///
74/// # Leap seconds
75///
76/// Jiff does not support leap seconds. Jiff behaves as if they don't exist.
77/// The only exception is that if one parses a time with a second component
78/// of `60`, then it is automatically constrained to `59`:
79///
80/// ```
81/// use jiff::civil::{Time, time};
82///
83/// let t: Time = "23:59:60".parse()?;
84/// assert_eq!(t, time(23, 59, 59, 0));
85///
86/// # Ok::<(), Box<dyn std::error::Error>>(())
87/// ```
88///
89/// # Comparisons
90///
91/// The `Time` type provides both `Eq` and `Ord` trait implementations to
92/// facilitate easy comparisons. When a time `t1` occurs before a time `t2`,
93/// then `t1 < t2`. For example:
94///
95/// ```
96/// use jiff::civil::time;
97///
98/// let t1 = time(7, 30, 1, 0);
99/// let t2 = time(8, 10, 0, 0);
100/// assert!(t1 < t2);
101/// ```
102///
103/// As mentioned above, `Time` values are not associated with timezones, and
104/// thus transitions such as DST are not taken into account when comparing
105/// `Time` values.
106///
107/// # Arithmetic
108///
109/// This type provides routines for adding and subtracting spans of time, as
110/// well as computing the span of time between two `Time` values.
111///
112/// For adding or subtracting spans of time, one can use any of the following
113/// routines:
114///
115/// * [`Time::wrapping_add`] or [`Time::wrapping_sub`] for wrapping arithmetic.
116/// * [`Time::checked_add`] or [`Time::checked_sub`] for checked arithmetic.
117/// * [`Time::saturating_add`] or [`Time::saturating_sub`] for saturating
118/// arithmetic.
119///
120/// Additionally, wrapping arithmetic is available via the `Add` and `Sub`
121/// trait implementations:
122///
123/// ```
124/// use jiff::{civil::time, ToSpan};
125///
126/// let t = time(20, 10, 1, 0);
127/// let span = 1.hours().minutes(49).seconds(59);
128/// assert_eq!(t + span, time(22, 0, 0, 0));
129///
130/// // Overflow will result in wrap-around unless using checked
131/// // arithmetic explicitly.
132/// let t = time(23, 59, 59, 999_999_999);
133/// assert_eq!(time(0, 0, 0, 0), t + 1.nanoseconds());
134/// ```
135///
136/// Wrapping arithmetic is used by default because it corresponds to how clocks
137/// showing the time of day behave in practice.
138///
139/// One can compute the span of time between two times using either
140/// [`Time::until`] or [`Time::since`]. It's also possible to subtract two
141/// `Time` values directly via a `Sub` trait implementation:
142///
143/// ```
144/// use jiff::{civil::time, ToSpan};
145///
146/// let time1 = time(22, 0, 0, 0);
147/// let time2 = time(20, 10, 1, 0);
148/// assert_eq!(
149///     time1 - time2,
150///     1.hours().minutes(49).seconds(59).fieldwise(),
151/// );
152/// ```
153///
154/// The `until` and `since` APIs are polymorphic and allow re-balancing and
155/// rounding the span returned. For example, the default largest unit is hours
156/// (as exemplified above), but we can ask for smaller units:
157///
158/// ```
159/// use jiff::{civil::time, ToSpan, Unit};
160///
161/// let time1 = time(23, 30, 0, 0);
162/// let time2 = time(7, 0, 0, 0);
163/// assert_eq!(
164///     time1.since((Unit::Minute, time2))?,
165///     990.minutes().fieldwise(),
166/// );
167///
168/// # Ok::<(), Box<dyn std::error::Error>>(())
169/// ```
170///
171/// Or even round the span returned:
172///
173/// ```
174/// use jiff::{civil::{TimeDifference, time}, RoundMode, ToSpan, Unit};
175///
176/// let time1 = time(23, 30, 0, 0);
177/// let time2 = time(23, 35, 59, 0);
178/// assert_eq!(
179///     time1.until(
180///         TimeDifference::new(time2).smallest(Unit::Minute),
181///     )?,
182///     5.minutes().fieldwise(),
183/// );
184/// // `TimeDifference` uses truncation as a rounding mode by default,
185/// // but you can set the rounding mode to break ties away from zero:
186/// assert_eq!(
187///     time1.until(
188///         TimeDifference::new(time2)
189///             .smallest(Unit::Minute)
190///             .mode(RoundMode::HalfExpand),
191///     )?,
192///     // Rounds up to 6 minutes.
193///     6.minutes().fieldwise(),
194/// );
195///
196/// # Ok::<(), Box<dyn std::error::Error>>(())
197/// ```
198///
199/// # Rounding
200///
201/// A `Time` can be rounded based on a [`TimeRound`] configuration of smallest
202/// units, rounding increment and rounding mode. Here's an example showing how
203/// to round to the nearest third hour:
204///
205/// ```
206/// use jiff::{civil::{TimeRound, time}, Unit};
207///
208/// let t = time(16, 27, 29, 999_999_999);
209/// assert_eq!(
210///     t.round(TimeRound::new().smallest(Unit::Hour).increment(3))?,
211///     time(15, 0, 0, 0),
212/// );
213/// // Or alternatively, make use of the `From<(Unit, i64)> for TimeRound`
214/// // trait implementation:
215/// assert_eq!(t.round((Unit::Hour, 3))?, time(15, 0, 0, 0));
216///
217/// # Ok::<(), Box<dyn std::error::Error>>(())
218/// ```
219///
220/// See [`Time::round`] for more details.
221#[derive(Clone, Copy, Eq, Hash, PartialEq, PartialOrd, Ord)]
222pub struct Time {
223    hour: Hour,
224    minute: Minute,
225    second: Second,
226    subsec_nanosecond: SubsecNanosecond,
227}
228
229impl Time {
230    /// The minimum representable time value.
231    ///
232    /// This corresponds to `00:00:00.000000000`.
233    pub const MIN: Time = Time::midnight();
234
235    /// The maximum representable time value.
236    ///
237    /// This corresponds to `23:59:59.999999999`.
238    pub const MAX: Time = Time::constant(23, 59, 59, 999_999_999);
239
240    /// Creates a new `Time` value from its component hour, minute, second and
241    /// fractional subsecond (up to nanosecond precision) values.
242    ///
243    /// To set the component values of a time after creating it, use
244    /// [`TimeWith`] via [`Time::with`] to build a new [`Time`] from the fields
245    /// of an existing time.
246    ///
247    /// # Errors
248    ///
249    /// This returns an error unless *all* of the following conditions are
250    /// true:
251    ///
252    /// * `0 <= hour <= 23`
253    /// * `0 <= minute <= 59`
254    /// * `0 <= second <= 59`
255    /// * `0 <= subsec_nanosecond <= 999,999,999`
256    ///
257    /// # Example
258    ///
259    /// This shows an example of a valid time:
260    ///
261    /// ```
262    /// use jiff::civil::Time;
263    ///
264    /// let t = Time::new(21, 30, 5, 123_456_789).unwrap();
265    /// assert_eq!(t.hour(), 21);
266    /// assert_eq!(t.minute(), 30);
267    /// assert_eq!(t.second(), 5);
268    /// assert_eq!(t.millisecond(), 123);
269    /// assert_eq!(t.microsecond(), 456);
270    /// assert_eq!(t.nanosecond(), 789);
271    /// ```
272    ///
273    /// This shows an example of an invalid time:
274    ///
275    /// ```
276    /// use jiff::civil::Time;
277    ///
278    /// assert!(Time::new(21, 30, 60, 0).is_err());
279    /// ```
280    #[inline]
281    pub fn new(
282        hour: i8,
283        minute: i8,
284        second: i8,
285        subsec_nanosecond: i32,
286    ) -> Result<Time, Error> {
287        let hour = Hour::try_new("hour", hour)?;
288        let minute = Minute::try_new("minute", minute)?;
289        let second = Second::try_new("second", second)?;
290        let subsec_nanosecond =
291            SubsecNanosecond::try_new("subsec_nanosecond", subsec_nanosecond)?;
292        Ok(Time::new_ranged(hour, minute, second, subsec_nanosecond))
293    }
294
295    /// Creates a new `Time` value in a `const` context.
296    ///
297    /// # Panics
298    ///
299    /// This panics if the given values do not correspond to a valid `Time`.
300    /// All of the following conditions must be true:
301    ///
302    /// * `0 <= hour <= 23`
303    /// * `0 <= minute <= 59`
304    /// * `0 <= second <= 59`
305    /// * `0 <= subsec_nanosecond <= 999,999,999`
306    ///
307    /// Similarly, when used in a const context, invalid parameters will
308    /// prevent your Rust program from compiling.
309    ///
310    /// # Example
311    ///
312    /// This shows an example of a valid time in a `const` context:
313    ///
314    /// ```
315    /// use jiff::civil::Time;
316    ///
317    /// const BEDTIME: Time = Time::constant(21, 30, 5, 123_456_789);
318    /// assert_eq!(BEDTIME.hour(), 21);
319    /// assert_eq!(BEDTIME.minute(), 30);
320    /// assert_eq!(BEDTIME.second(), 5);
321    /// assert_eq!(BEDTIME.millisecond(), 123);
322    /// assert_eq!(BEDTIME.microsecond(), 456);
323    /// assert_eq!(BEDTIME.nanosecond(), 789);
324    /// assert_eq!(BEDTIME.subsec_nanosecond(), 123_456_789);
325    /// ```
326    #[inline]
327    pub const fn constant(
328        hour: i8,
329        minute: i8,
330        second: i8,
331        subsec_nanosecond: i32,
332    ) -> Time {
333        if !Hour::contains(hour) {
334            panic!("invalid hour");
335        }
336        if !Minute::contains(minute) {
337            panic!("invalid minute");
338        }
339        if !Second::contains(second) {
340            panic!("invalid second");
341        }
342        if !SubsecNanosecond::contains(subsec_nanosecond) {
343            panic!("invalid nanosecond");
344        }
345        let hour = Hour::new_unchecked(hour);
346        let minute = Minute::new_unchecked(minute);
347        let second = Second::new_unchecked(second);
348        let subsec_nanosecond =
349            SubsecNanosecond::new_unchecked(subsec_nanosecond);
350        Time { hour, minute, second, subsec_nanosecond }
351    }
352
353    /// Returns the first moment of time in a day.
354    ///
355    /// Specifically, this has the `hour`, `minute`, `second`, `millisecond`,
356    /// `microsecond` and `nanosecond` fields all set to `0`.
357    ///
358    /// # Example
359    ///
360    /// ```
361    /// use jiff::civil::Time;
362    ///
363    /// let t = Time::midnight();
364    /// assert_eq!(t.hour(), 0);
365    /// assert_eq!(t.minute(), 0);
366    /// assert_eq!(t.second(), 0);
367    /// assert_eq!(t.millisecond(), 0);
368    /// assert_eq!(t.microsecond(), 0);
369    /// assert_eq!(t.nanosecond(), 0);
370    /// ```
371    #[inline]
372    pub const fn midnight() -> Time {
373        Time::constant(0, 0, 0, 0)
374    }
375
376    /// Create a builder for constructing a `Time` from the fields of this
377    /// time.
378    ///
379    /// See the methods on [`TimeWith`] for the different ways one can set the
380    /// fields of a new `Time`.
381    ///
382    /// # Example
383    ///
384    /// Unlike [`Date`], a [`Time`] is valid for all possible valid values
385    /// of its fields. That is, there is no way for two valid field values
386    /// to combine into an invalid `Time`. So, for `Time`, this builder does
387    /// have as much of a benefit versus an API design with methods like
388    /// `Time::with_hour` and `Time::with_minute`. Nevertheless, this builder
389    /// permits settings multiple fields at the same time and performing only
390    /// one validity check. Moreover, this provides a consistent API with other
391    /// date and time types in this crate.
392    ///
393    /// ```
394    /// use jiff::civil::time;
395    ///
396    /// let t1 = time(0, 0, 24, 0);
397    /// let t2 = t1.with().hour(15).minute(30).millisecond(10).build()?;
398    /// assert_eq!(t2, time(15, 30, 24, 10_000_000));
399    ///
400    /// # Ok::<(), Box<dyn std::error::Error>>(())
401    /// ```
402    #[inline]
403    pub fn with(self) -> TimeWith {
404        TimeWith::new(self)
405    }
406
407    /// Returns the "hour" component of this time.
408    ///
409    /// The value returned is guaranteed to be in the range `0..=23`.
410    ///
411    /// # Example
412    ///
413    /// ```
414    /// use jiff::civil::time;
415    ///
416    /// let t = time(13, 35, 56, 123_456_789);
417    /// assert_eq!(t.hour(), 13);
418    /// ```
419    #[inline]
420    pub fn hour(self) -> i8 {
421        self.hour_ranged().get()
422    }
423
424    /// Returns the "minute" component of this time.
425    ///
426    /// The value returned is guaranteed to be in the range `0..=59`.
427    ///
428    /// # Example
429    ///
430    /// ```
431    /// use jiff::civil::time;
432    ///
433    /// let t = time(13, 35, 56, 123_456_789);
434    /// assert_eq!(t.minute(), 35);
435    /// ```
436    #[inline]
437    pub fn minute(self) -> i8 {
438        self.minute_ranged().get()
439    }
440
441    /// Returns the "second" component of this time.
442    ///
443    /// The value returned is guaranteed to be in the range `0..=59`.
444    ///
445    /// # Example
446    ///
447    /// ```
448    /// use jiff::civil::time;
449    ///
450    /// let t = time(13, 35, 56, 123_456_789);
451    /// assert_eq!(t.second(), 56);
452    /// ```
453    #[inline]
454    pub fn second(self) -> i8 {
455        self.second_ranged().get()
456    }
457
458    /// Returns the "millisecond" component of this time.
459    ///
460    /// The value returned is guaranteed to be in the range `0..=999`.
461    ///
462    /// # Example
463    ///
464    /// ```
465    /// use jiff::civil::time;
466    ///
467    /// let t = time(13, 35, 56, 123_456_789);
468    /// assert_eq!(t.millisecond(), 123);
469    /// ```
470    #[inline]
471    pub fn millisecond(self) -> i16 {
472        self.millisecond_ranged().get()
473    }
474
475    /// Returns the "microsecond" component of this time.
476    ///
477    /// The value returned is guaranteed to be in the range `0..=999`.
478    ///
479    /// # Example
480    ///
481    /// ```
482    /// use jiff::civil::time;
483    ///
484    /// let t = time(13, 35, 56, 123_456_789);
485    /// assert_eq!(t.microsecond(), 456);
486    /// ```
487    #[inline]
488    pub fn microsecond(self) -> i16 {
489        self.microsecond_ranged().get()
490    }
491
492    /// Returns the "nanosecond" component of this time.
493    ///
494    /// The value returned is guaranteed to be in the range `0..=999`.
495    ///
496    /// # Example
497    ///
498    /// ```
499    /// use jiff::civil::time;
500    ///
501    /// let t = time(13, 35, 56, 123_456_789);
502    /// assert_eq!(t.nanosecond(), 789);
503    /// ```
504    #[inline]
505    pub fn nanosecond(self) -> i16 {
506        self.nanosecond_ranged().get()
507    }
508
509    /// Returns the fractional nanosecond for this `Time` value.
510    ///
511    /// If you want to set this value on `Time`, then use
512    /// [`TimeWith::subsec_nanosecond`] via [`Time::with`].
513    ///
514    /// The value returned is guaranteed to be in the range `0..=999_999_999`.
515    ///
516    /// # Example
517    ///
518    /// This shows the relationship between constructing a `Time` value
519    /// with routines like `with().millisecond()` and accessing the entire
520    /// fractional part as a nanosecond:
521    ///
522    /// ```
523    /// use jiff::civil::time;
524    ///
525    /// let t = time(15, 21, 35, 0).with().millisecond(987).build()?;
526    /// assert_eq!(t.subsec_nanosecond(), 987_000_000);
527    ///
528    /// # Ok::<(), Box<dyn std::error::Error>>(())
529    /// ```
530    ///
531    /// # Example: nanoseconds from a timestamp
532    ///
533    /// This shows how the fractional nanosecond part of a `Time` value
534    /// manifests from a specific timestamp.
535    ///
536    /// ```
537    /// use jiff::{civil, Timestamp};
538    ///
539    /// // 1,234 nanoseconds after the Unix epoch.
540    /// let zdt = Timestamp::new(0, 1_234)?.in_tz("UTC")?;
541    /// let time = zdt.datetime().time();
542    /// assert_eq!(time.subsec_nanosecond(), 1_234);
543    ///
544    /// // 1,234 nanoseconds before the Unix epoch.
545    /// let zdt = Timestamp::new(0, -1_234)?.in_tz("UTC")?;
546    /// let time = zdt.datetime().time();
547    /// // The nanosecond is equal to `1_000_000_000 - 1_234`.
548    /// assert_eq!(time.subsec_nanosecond(), 999998766);
549    /// // Looking at the other components of the time value might help.
550    /// assert_eq!(time.hour(), 23);
551    /// assert_eq!(time.minute(), 59);
552    /// assert_eq!(time.second(), 59);
553    ///
554    /// # Ok::<(), Box<dyn std::error::Error>>(())
555    /// ```
556    #[inline]
557    pub fn subsec_nanosecond(self) -> i32 {
558        self.subsec_nanosecond_ranged().get()
559    }
560
561    /// Given a [`Date`], this constructs a [`DateTime`] value with its time
562    /// component equal to this time.
563    ///
564    /// This is a convenience function for [`DateTime::from_parts`].
565    ///
566    /// # Example
567    ///
568    /// ```
569    /// use jiff::civil::{DateTime, date, time};
570    ///
571    /// let d = date(2010, 3, 14);
572    /// let t = time(2, 30, 0, 0);
573    /// assert_eq!(DateTime::from_parts(d, t), t.to_datetime(d));
574    /// ```
575    #[inline]
576    pub const fn to_datetime(self, date: Date) -> DateTime {
577        DateTime::from_parts(date, self)
578    }
579
580    /// A convenience function for constructing a [`DateTime`] from this time
581    /// on the date given by its components.
582    ///
583    /// # Example
584    ///
585    /// ```
586    /// use jiff::civil::time;
587    ///
588    /// assert_eq!(
589    ///     time(2, 30, 0, 0).on(2010, 3, 14).to_string(),
590    ///     "2010-03-14T02:30:00",
591    /// );
592    /// ```
593    ///
594    /// One can also flip the order by making use of [`Date::at`]:
595    ///
596    /// ```
597    /// use jiff::civil::date;
598    ///
599    /// assert_eq!(
600    ///     date(2010, 3, 14).at(2, 30, 0, 0).to_string(),
601    ///     "2010-03-14T02:30:00",
602    /// );
603    /// ```
604    #[inline]
605    pub const fn on(self, year: i16, month: i8, day: i8) -> DateTime {
606        DateTime::from_parts(Date::constant(year, month, day), self)
607    }
608
609    /// Add the given span to this time and wrap around on overflow.
610    ///
611    /// This operation accepts three different duration types: [`Span`],
612    /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via
613    /// `From` trait implementations for the [`TimeArithmetic`] type.
614    ///
615    /// # Properties
616    ///
617    /// Given times `t1` and `t2`, and a span `s`, with `t2 = t1 + s`, it
618    /// follows then that `t1 = t2 - s` for all values of `t1` and `s` that sum
619    /// to `t2`.
620    ///
621    /// In short, subtracting the given span from the sum returned by this
622    /// function is guaranteed to result in precisely the original time.
623    ///
624    /// # Example: available via addition operator
625    ///
626    /// This routine can be used via the `+` operator.
627    ///
628    /// ```
629    /// use jiff::{civil::time, ToSpan};
630    ///
631    /// let t = time(20, 10, 1, 0);
632    /// assert_eq!(
633    ///     t + 1.hours().minutes(49).seconds(59),
634    ///     time(22, 0, 0, 0),
635    /// );
636    /// ```
637    ///
638    /// # Example: add nanoseconds to a `Time`
639    ///
640    /// ```
641    /// use jiff::{civil::time, ToSpan};
642    ///
643    /// let t = time(22, 35, 1, 0);
644    /// assert_eq!(
645    ///     time(22, 35, 3, 500_000_000),
646    ///     t.wrapping_add(2_500_000_000i64.nanoseconds()),
647    /// );
648    /// ```
649    ///
650    /// # Example: add span with multiple units
651    ///
652    /// ```
653    /// use jiff::{civil::time, ToSpan};
654    ///
655    /// let t = time(20, 10, 1, 0);
656    /// assert_eq!(
657    ///     time(22, 0, 0, 0),
658    ///     t.wrapping_add(1.hours().minutes(49).seconds(59)),
659    /// );
660    /// ```
661    ///
662    /// # Example: adding an empty span is a no-op
663    ///
664    /// ```
665    /// use jiff::{civil::time, Span};
666    ///
667    /// let t = time(20, 10, 1, 0);
668    /// assert_eq!(t, t.wrapping_add(Span::new()));
669    /// ```
670    ///
671    /// # Example: addition wraps on overflow
672    ///
673    /// ```
674    /// use jiff::{civil::time, SignedDuration, ToSpan};
675    ///
676    /// let t = time(23, 59, 59, 999_999_999);
677    /// assert_eq!(
678    ///     t.wrapping_add(1.nanoseconds()),
679    ///     time(0, 0, 0, 0),
680    /// );
681    /// assert_eq!(
682    ///     t.wrapping_add(SignedDuration::from_nanos(1)),
683    ///     time(0, 0, 0, 0),
684    /// );
685    /// assert_eq!(
686    ///     t.wrapping_add(std::time::Duration::from_nanos(1)),
687    ///     time(0, 0, 0, 0),
688    /// );
689    /// ```
690    ///
691    /// Similarly, if there are any non-zero units greater than hours in the
692    /// given span, then they also result in wrapping behavior (i.e., they are
693    /// ignored):
694    ///
695    /// ```
696    /// use jiff::{civil::time, ToSpan};
697    ///
698    /// // doesn't matter what our time value is in this example
699    /// let t = time(0, 0, 0, 0);
700    /// assert_eq!(t, t.wrapping_add(1.days()));
701    /// ```
702    #[inline]
703    pub fn wrapping_add<A: Into<TimeArithmetic>>(self, duration: A) -> Time {
704        let duration: TimeArithmetic = duration.into();
705        duration.wrapping_add(self)
706    }
707
708    #[inline]
709    fn wrapping_add_span(self, span: Span) -> Time {
710        let mut sum = self.to_nanosecond().without_bounds();
711        sum = sum.wrapping_add(
712            span.get_hours_ranged()
713                .without_bounds()
714                .wrapping_mul(t::NANOS_PER_HOUR),
715        );
716        sum = sum.wrapping_add(
717            span.get_minutes_ranged()
718                .without_bounds()
719                .wrapping_mul(t::NANOS_PER_MINUTE),
720        );
721        sum = sum.wrapping_add(
722            span.get_seconds_ranged()
723                .without_bounds()
724                .wrapping_mul(t::NANOS_PER_SECOND),
725        );
726        sum = sum.wrapping_add(
727            span.get_milliseconds_ranged()
728                .without_bounds()
729                .wrapping_mul(t::NANOS_PER_MILLI),
730        );
731        sum = sum.wrapping_add(
732            span.get_microseconds_ranged()
733                .without_bounds()
734                .wrapping_mul(t::NANOS_PER_MICRO),
735        );
736        sum = sum.wrapping_add(span.get_nanoseconds_ranged().without_bounds());
737        let civil_day_nanosecond = sum % t::NANOS_PER_CIVIL_DAY;
738        Time::from_nanosecond(civil_day_nanosecond.rinto())
739    }
740
741    #[inline]
742    fn wrapping_add_signed_duration(self, duration: SignedDuration) -> Time {
743        let start = t::NoUnits128::rfrom(self.to_nanosecond());
744        let duration = t::NoUnits128::new_unchecked(duration.as_nanos());
745        let end = start.wrapping_add(duration) % t::NANOS_PER_CIVIL_DAY;
746        Time::from_nanosecond(end.rinto())
747    }
748
749    #[inline]
750    fn wrapping_add_unsigned_duration(
751        self,
752        duration: UnsignedDuration,
753    ) -> Time {
754        let start = t::NoUnits128::rfrom(self.to_nanosecond());
755        // OK because 96-bit unsigned integer can't overflow i128.
756        let duration = i128::try_from(duration.as_nanos()).unwrap();
757        let duration = t::NoUnits128::new_unchecked(duration);
758        let duration = duration % t::NANOS_PER_CIVIL_DAY;
759        let end = start.wrapping_add(duration) % t::NANOS_PER_CIVIL_DAY;
760        Time::from_nanosecond(end.rinto())
761    }
762
763    /// This routine is identical to [`Time::wrapping_add`] with the duration
764    /// negated.
765    ///
766    /// # Example
767    ///
768    /// ```
769    /// use jiff::{civil::time, SignedDuration, ToSpan};
770    ///
771    /// let t = time(0, 0, 0, 0);
772    /// assert_eq!(
773    ///     t.wrapping_sub(1.nanoseconds()),
774    ///     time(23, 59, 59, 999_999_999),
775    /// );
776    /// assert_eq!(
777    ///     t.wrapping_sub(SignedDuration::from_nanos(1)),
778    ///     time(23, 59, 59, 999_999_999),
779    /// );
780    /// assert_eq!(
781    ///     t.wrapping_sub(std::time::Duration::from_nanos(1)),
782    ///     time(23, 59, 59, 999_999_999),
783    /// );
784    ///
785    /// assert_eq!(
786    ///     t.wrapping_sub(SignedDuration::MIN),
787    ///     time(15, 30, 8, 999_999_999),
788    /// );
789    /// assert_eq!(
790    ///     t.wrapping_sub(SignedDuration::MAX),
791    ///     time(8, 29, 52, 1),
792    /// );
793    /// assert_eq!(
794    ///     t.wrapping_sub(std::time::Duration::MAX),
795    ///     time(16, 59, 44, 1),
796    /// );
797    /// ```
798    #[inline]
799    pub fn wrapping_sub<A: Into<TimeArithmetic>>(self, duration: A) -> Time {
800        let duration: TimeArithmetic = duration.into();
801        duration.wrapping_sub(self)
802    }
803
804    #[inline]
805    fn wrapping_sub_unsigned_duration(
806        self,
807        duration: UnsignedDuration,
808    ) -> Time {
809        let start = t::NoUnits128::rfrom(self.to_nanosecond());
810        // OK because 96-bit unsigned integer can't overflow i128.
811        let duration = i128::try_from(duration.as_nanos()).unwrap();
812        let duration = t::NoUnits128::new_unchecked(duration);
813        let end = start.wrapping_sub(duration) % t::NANOS_PER_CIVIL_DAY;
814        Time::from_nanosecond(end.rinto())
815    }
816
817    /// Add the given span to this time and return an error if the result would
818    /// otherwise overflow.
819    ///
820    /// This operation accepts three different duration types: [`Span`],
821    /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via
822    /// `From` trait implementations for the [`TimeArithmetic`] type.
823    ///
824    /// # Properties
825    ///
826    /// Given a time `t1` and a span `s`, and assuming `t2 = t1 + s` exists, it
827    /// follows then that `t1 = t2 - s` for all values of `t1` and `s` that sum
828    /// to a valid `t2`.
829    ///
830    /// In short, subtracting the given span from the sum returned by this
831    /// function is guaranteed to result in precisely the original time.
832    ///
833    /// # Errors
834    ///
835    /// If the sum would overflow the minimum or maximum timestamp values, then
836    /// an error is returned.
837    ///
838    /// If the given span has any non-zero units greater than hours, then an
839    /// error is returned.
840    ///
841    /// # Example: add nanoseconds to a `Time`
842    ///
843    /// ```
844    /// use jiff::{civil::time, ToSpan};
845    ///
846    /// let t = time(22, 35, 1, 0);
847    /// assert_eq!(
848    ///     time(22, 35, 3, 500_000_000),
849    ///     t.checked_add(2_500_000_000i64.nanoseconds())?,
850    /// );
851    /// # Ok::<(), Box<dyn std::error::Error>>(())
852    /// ```
853    ///
854    /// # Example: add span with multiple units
855    ///
856    /// ```
857    /// use jiff::{civil::time, ToSpan};
858    ///
859    /// let t = time(20, 10, 1, 0);
860    /// assert_eq!(
861    ///     time(22, 0, 0, 0),
862    ///     t.checked_add(1.hours().minutes(49).seconds(59))?,
863    /// );
864    /// # Ok::<(), Box<dyn std::error::Error>>(())
865    /// ```
866    ///
867    /// # Example: adding an empty span is a no-op
868    ///
869    /// ```
870    /// use jiff::{civil::time, Span};
871    ///
872    /// let t = time(20, 10, 1, 0);
873    /// assert_eq!(t, t.checked_add(Span::new())?);
874    ///
875    /// # Ok::<(), Box<dyn std::error::Error>>(())
876    /// ```
877    ///
878    /// # Example: error on overflow
879    ///
880    /// ```
881    /// use jiff::{civil::time, ToSpan};
882    ///
883    /// // okay
884    /// let t = time(23, 59, 59, 999_999_998);
885    /// assert_eq!(
886    ///     t.with().nanosecond(999).build()?,
887    ///     t.checked_add(1.nanoseconds())?,
888    /// );
889    ///
890    /// // not okay
891    /// let t = time(23, 59, 59, 999_999_999);
892    /// assert!(t.checked_add(1.nanoseconds()).is_err());
893    ///
894    /// # Ok::<(), Box<dyn std::error::Error>>(())
895    /// ```
896    ///
897    /// Similarly, if there are any non-zero units greater than hours in the
898    /// given span, then they also result in overflow (and thus an error):
899    ///
900    /// ```
901    /// use jiff::{civil::time, ToSpan};
902    ///
903    /// // doesn't matter what our time value is in this example
904    /// let t = time(0, 0, 0, 0);
905    /// assert!(t.checked_add(1.days()).is_err());
906    /// ```
907    ///
908    /// # Example: adding absolute durations
909    ///
910    /// This shows how to add signed and unsigned absolute durations to a
911    /// `Time`. As with adding a `Span`, any overflow that occurs results in
912    /// an error.
913    ///
914    /// ```
915    /// use std::time::Duration;
916    ///
917    /// use jiff::{civil::time, SignedDuration};
918    ///
919    /// let t = time(23, 0, 0, 0);
920    ///
921    /// let dur = SignedDuration::from_mins(30);
922    /// assert_eq!(t.checked_add(dur)?, time(23, 30, 0, 0));
923    /// assert_eq!(t.checked_add(-dur)?, time(22, 30, 0, 0));
924    ///
925    /// let dur = Duration::new(0, 1);
926    /// assert_eq!(t.checked_add(dur)?, time(23, 0, 0, 1));
927    ///
928    /// # Ok::<(), Box<dyn std::error::Error>>(())
929    /// ```
930    #[inline]
931    pub fn checked_add<A: Into<TimeArithmetic>>(
932        self,
933        duration: A,
934    ) -> Result<Time, Error> {
935        let duration: TimeArithmetic = duration.into();
936        duration.checked_add(self)
937    }
938
939    #[inline]
940    fn checked_add_span(self, span: Span) -> Result<Time, Error> {
941        let (time, span) = self.overflowing_add(span)?;
942        if let Some(err) = span.smallest_non_time_non_zero_unit_error() {
943            return Err(err);
944        }
945        Ok(time)
946    }
947
948    #[inline]
949    fn checked_add_duration(
950        self,
951        duration: SignedDuration,
952    ) -> Result<Time, Error> {
953        let original = duration;
954        let start = t::NoUnits128::rfrom(self.to_nanosecond());
955        let duration = t::NoUnits128::new_unchecked(duration.as_nanos());
956        // This can never fail because the maximum duration fits into a
957        // 96-bit integer, and adding any 96-bit integer to any 64-bit
958        // integer can never overflow a 128-bit integer.
959        let end = start.try_checked_add("nanoseconds", duration).unwrap();
960        let end = CivilDayNanosecond::try_rfrom("nanoseconds", end)
961            .with_context(|| {
962                err!(
963                    "adding signed duration {duration:?}, equal to
964                     {nanos} nanoseconds, to {time} overflowed",
965                    duration = original,
966                    nanos = original.as_nanos(),
967                    time = self,
968                )
969            })?;
970        Ok(Time::from_nanosecond(end))
971    }
972
973    /// This routine is identical to [`Time::checked_add`] with the duration
974    /// negated.
975    ///
976    /// # Errors
977    ///
978    /// This has the same error conditions as [`Time::checked_add`].
979    ///
980    /// # Example
981    ///
982    /// ```
983    /// use std::time::Duration;
984    ///
985    /// use jiff::{civil::time, SignedDuration, ToSpan};
986    ///
987    /// let t = time(22, 0, 0, 0);
988    /// assert_eq!(
989    ///     t.checked_sub(1.hours().minutes(49).seconds(59))?,
990    ///     time(20, 10, 1, 0),
991    /// );
992    /// assert_eq!(
993    ///     t.checked_sub(SignedDuration::from_hours(1))?,
994    ///     time(21, 0, 0, 0),
995    /// );
996    /// assert_eq!(
997    ///     t.checked_sub(Duration::from_secs(60 * 60))?,
998    ///     time(21, 0, 0, 0),
999    /// );
1000    /// # Ok::<(), Box<dyn std::error::Error>>(())
1001    /// ```
1002    #[inline]
1003    pub fn checked_sub<A: Into<TimeArithmetic>>(
1004        self,
1005        duration: A,
1006    ) -> Result<Time, Error> {
1007        let duration: TimeArithmetic = duration.into();
1008        duration.checked_neg().and_then(|ta| ta.checked_add(self))
1009    }
1010
1011    /// This routine is identical to [`Time::checked_add`], except the
1012    /// result saturates on overflow. That is, instead of overflow, either
1013    /// [`Time::MIN`] or [`Time::MAX`] is returned.
1014    ///
1015    /// # Example
1016    ///
1017    /// ```
1018    /// use jiff::{civil::{Time, time}, SignedDuration, ToSpan};
1019    ///
1020    /// // no saturation
1021    /// let t = time(23, 59, 59, 999_999_998);
1022    /// assert_eq!(
1023    ///     t.with().nanosecond(999).build()?,
1024    ///     t.saturating_add(1.nanoseconds()),
1025    /// );
1026    ///
1027    /// // saturates
1028    /// let t = time(23, 59, 59, 999_999_999);
1029    /// assert_eq!(Time::MAX, t.saturating_add(1.nanoseconds()));
1030    /// assert_eq!(Time::MAX, t.saturating_add(SignedDuration::MAX));
1031    /// assert_eq!(Time::MIN, t.saturating_add(SignedDuration::MIN));
1032    /// assert_eq!(Time::MAX, t.saturating_add(std::time::Duration::MAX));
1033    ///
1034    /// # Ok::<(), Box<dyn std::error::Error>>(())
1035    /// ```
1036    ///
1037    /// Similarly, if there are any non-zero units greater than hours in the
1038    /// given span, then they also result in overflow (and thus saturation):
1039    ///
1040    /// ```
1041    /// use jiff::{civil::{Time, time}, ToSpan};
1042    ///
1043    /// // doesn't matter what our time value is in this example
1044    /// let t = time(0, 0, 0, 0);
1045    /// assert_eq!(Time::MAX, t.saturating_add(1.days()));
1046    /// ```
1047    #[inline]
1048    pub fn saturating_add<A: Into<TimeArithmetic>>(self, duration: A) -> Time {
1049        let duration: TimeArithmetic = duration.into();
1050        self.checked_add(duration).unwrap_or_else(|_| {
1051            if duration.is_negative() {
1052                Time::MIN
1053            } else {
1054                Time::MAX
1055            }
1056        })
1057    }
1058
1059    /// This routine is identical to [`Time::saturating_add`] with the duration
1060    /// negated.
1061    ///
1062    /// # Example
1063    ///
1064    /// ```
1065    /// use jiff::{civil::{Time, time}, SignedDuration, ToSpan};
1066    ///
1067    /// // no saturation
1068    /// let t = time(0, 0, 0, 1);
1069    /// assert_eq!(
1070    ///     t.with().nanosecond(0).build()?,
1071    ///     t.saturating_sub(1.nanoseconds()),
1072    /// );
1073    ///
1074    /// // saturates
1075    /// let t = time(0, 0, 0, 0);
1076    /// assert_eq!(Time::MIN, t.saturating_sub(1.nanoseconds()));
1077    /// assert_eq!(Time::MIN, t.saturating_sub(SignedDuration::MAX));
1078    /// assert_eq!(Time::MAX, t.saturating_sub(SignedDuration::MIN));
1079    /// assert_eq!(Time::MIN, t.saturating_sub(std::time::Duration::MAX));
1080    ///
1081    /// # Ok::<(), Box<dyn std::error::Error>>(())
1082    /// ```
1083    #[inline]
1084    pub fn saturating_sub<A: Into<TimeArithmetic>>(self, duration: A) -> Time {
1085        let duration: TimeArithmetic = duration.into();
1086        let Ok(duration) = duration.checked_neg() else { return Time::MIN };
1087        self.saturating_add(duration)
1088    }
1089
1090    /// Adds the given span to the this time value, and returns the resulting
1091    /// time with any overflowing amount in the span returned.
1092    ///
1093    /// This isn't part of the public API because it seems a little odd, and
1094    /// I'm unsure of its use case. Overall this routine is a bit specialized
1095    /// and I'm not sure how generally useful it is. But it is used in crucial
1096    /// points in other parts of this crate.
1097    ///
1098    /// If you want this public, please file an issue and discuss your use
1099    /// case: https://github.com/BurntSushi/jiff/issues/new
1100    #[inline]
1101    pub(crate) fn overflowing_add(
1102        self,
1103        span: Span,
1104    ) -> Result<(Time, Span), Error> {
1105        if let Some(err) = span.smallest_non_time_non_zero_unit_error() {
1106            return Err(err);
1107        }
1108        let span_nanos = span.to_invariant_nanoseconds();
1109        let time_nanos = self.to_nanosecond();
1110        let sum = span_nanos + time_nanos;
1111        let days = t::SpanDays::try_new(
1112            "overflowing-days",
1113            sum.div_floor(t::NANOS_PER_CIVIL_DAY),
1114        )?;
1115        let time_nanos = sum.rem_floor(t::NANOS_PER_CIVIL_DAY);
1116        let time = Time::from_nanosecond(time_nanos.rinto());
1117        Ok((time, Span::new().days_ranged(days)))
1118    }
1119
1120    /// Like `overflowing_add`, but with `SignedDuration`.
1121    ///
1122    /// This is used for datetime arithmetic, when adding to the time
1123    /// component overflows into days (always 24 hours).
1124    #[inline]
1125    pub(crate) fn overflowing_add_duration(
1126        self,
1127        duration: SignedDuration,
1128    ) -> Result<(Time, SignedDuration), Error> {
1129        let start = t::NoUnits128::rfrom(self.to_nanosecond());
1130        let duration = t::NoUnits96::new_unchecked(duration.as_nanos());
1131        // This can never fail because the maximum duration fits into a
1132        // 96-bit integer, and adding any 96-bit integer to any 64-bit
1133        // integer can never overflow a 128-bit integer.
1134        let sum = start.try_checked_add("nanoseconds", duration).unwrap();
1135        let days = t::SpanDays::try_new(
1136            "overflowing-days",
1137            sum.div_floor(t::NANOS_PER_CIVIL_DAY),
1138        )?;
1139        let time_nanos = sum.rem_floor(t::NANOS_PER_CIVIL_DAY);
1140        let time = Time::from_nanosecond(time_nanos.rinto());
1141        // OK because of the constraint imposed by t::SpanDays.
1142        let hours = i64::from(days).checked_mul(24).unwrap();
1143        Ok((time, SignedDuration::from_hours(hours)))
1144    }
1145
1146    /// Returns a span representing the elapsed time from this time until
1147    /// the given `other` time.
1148    ///
1149    /// When `other` is earlier than this time, the span returned will be
1150    /// negative.
1151    ///
1152    /// Depending on the input provided, the span returned is rounded. It may
1153    /// also be balanced down to smaller units than the default. By default,
1154    /// the span returned is balanced such that the biggest possible unit is
1155    /// hours.
1156    ///
1157    /// This operation is configured by providing a [`TimeDifference`]
1158    /// value. Since this routine accepts anything that implements
1159    /// `Into<TimeDifference>`, once can pass a `Time` directly. One
1160    /// can also pass a `(Unit, Time)`, where `Unit` is treated as
1161    /// [`TimeDifference::largest`].
1162    ///
1163    /// # Properties
1164    ///
1165    /// As long as no rounding is requested, it is guaranteed that adding the
1166    /// span returned to the `other` time will always equal this time.
1167    ///
1168    /// # Errors
1169    ///
1170    /// An error can occur if `TimeDifference` is misconfigured. For example,
1171    /// if the smallest unit provided is bigger than the largest unit, or if
1172    /// the largest unit is bigger than [`Unit::Hour`].
1173    ///
1174    /// It is guaranteed that if one provides a time with the default
1175    /// [`TimeDifference`] configuration, then this routine will never fail.
1176    ///
1177    /// # Examples
1178    ///
1179    /// ```
1180    /// use jiff::{civil::time, ToSpan};
1181    ///
1182    /// let t1 = time(22, 35, 1, 0);
1183    /// let t2 = time(22, 35, 3, 500_000_000);
1184    /// assert_eq!(t1.until(t2)?, 2.seconds().milliseconds(500).fieldwise());
1185    /// // Flipping the dates is fine, but you'll get a negative span.
1186    /// assert_eq!(t2.until(t1)?, -2.seconds().milliseconds(500).fieldwise());
1187    ///
1188    /// # Ok::<(), Box<dyn std::error::Error>>(())
1189    /// ```
1190    ///
1191    /// # Example: using smaller units
1192    ///
1193    /// This example shows how to contract the span returned to smaller units.
1194    /// This makes use of a `From<(Unit, Time)> for TimeDifference`
1195    /// trait implementation.
1196    ///
1197    /// ```
1198    /// use jiff::{civil::time, Unit, ToSpan};
1199    ///
1200    /// let t1 = time(3, 24, 30, 3500);
1201    /// let t2 = time(15, 30, 0, 0);
1202    ///
1203    /// // The default limits spans to using "hours" as the biggest unit.
1204    /// let span = t1.until(t2)?;
1205    /// assert_eq!(span.to_string(), "PT12H5M29.9999965S");
1206    ///
1207    /// // But we can ask for smaller units, like capping the biggest unit
1208    /// // to minutes instead of hours.
1209    /// let span = t1.until((Unit::Minute, t2))?;
1210    /// assert_eq!(span.to_string(), "PT725M29.9999965S");
1211    ///
1212    /// # Ok::<(), Box<dyn std::error::Error>>(())
1213    /// ```
1214    #[inline]
1215    pub fn until<A: Into<TimeDifference>>(
1216        self,
1217        other: A,
1218    ) -> Result<Span, Error> {
1219        let args: TimeDifference = other.into();
1220        let span = args.until_with_largest_unit(self)?;
1221        if args.rounding_may_change_span() {
1222            span.round(args.round)
1223        } else {
1224            Ok(span)
1225        }
1226    }
1227
1228    /// This routine is identical to [`Time::until`], but the order of the
1229    /// parameters is flipped.
1230    ///
1231    /// # Errors
1232    ///
1233    /// This has the same error conditions as [`Time::until`].
1234    ///
1235    /// # Example
1236    ///
1237    /// This routine can be used via the `-` operator. Since the default
1238    /// configuration is used and because a `Span` can represent the difference
1239    /// between any two possible times, it will never panic.
1240    ///
1241    /// ```
1242    /// use jiff::{civil::time, ToSpan};
1243    ///
1244    /// let earlier = time(1, 0, 0, 0);
1245    /// let later = time(22, 30, 0, 0);
1246    /// assert_eq!(later - earlier, 21.hours().minutes(30).fieldwise());
1247    /// ```
1248    #[inline]
1249    pub fn since<A: Into<TimeDifference>>(
1250        self,
1251        other: A,
1252    ) -> Result<Span, Error> {
1253        let args: TimeDifference = other.into();
1254        let span = -args.until_with_largest_unit(self)?;
1255        if args.rounding_may_change_span() {
1256            span.round(args.round)
1257        } else {
1258            Ok(span)
1259        }
1260    }
1261
1262    /// Returns an absolute duration representing the elapsed time from this
1263    /// time until the given `other` time.
1264    ///
1265    /// When `other` occurs before this time, then the duration returned will
1266    /// be negative.
1267    ///
1268    /// Unlike [`Time::until`], this returns a duration corresponding to a
1269    /// 96-bit integer of nanoseconds between two times. In this case of
1270    /// computing durations between civil times where all days are assumed to
1271    /// be 24 hours long, the duration returned will always be less than 24
1272    /// hours.
1273    ///
1274    /// # Fallibility
1275    ///
1276    /// This routine never panics or returns an error. Since there are no
1277    /// configuration options that can be incorrectly provided, no error is
1278    /// possible when calling this routine. In contrast, [`Time::until`] can
1279    /// return an error in some cases due to misconfiguration. But like this
1280    /// routine, [`Time::until`] never panics or returns an error in its
1281    /// default configuration.
1282    ///
1283    /// # When should I use this versus [`Time::until`]?
1284    ///
1285    /// See the type documentation for [`SignedDuration`] for the section on
1286    /// when one should use [`Span`] and when one should use `SignedDuration`.
1287    /// In short, use `Span` (and therefore `Time::until`) unless you have a
1288    /// specific reason to do otherwise.
1289    ///
1290    /// # Example
1291    ///
1292    /// ```
1293    /// use jiff::{civil::time, SignedDuration};
1294    ///
1295    /// let t1 = time(22, 35, 1, 0);
1296    /// let t2 = time(22, 35, 3, 500_000_000);
1297    /// assert_eq!(t1.duration_until(t2), SignedDuration::new(2, 500_000_000));
1298    /// // Flipping the time is fine, but you'll get a negative duration.
1299    /// assert_eq!(t2.duration_until(t1), -SignedDuration::new(2, 500_000_000));
1300    /// ```
1301    ///
1302    /// # Example: difference with [`Time::until`]
1303    ///
1304    /// Since the difference between two civil times is always expressed in
1305    /// units of hours or smaller, and units of hours or smaller are always
1306    /// uniform, there is no "expressive" difference between this routine and
1307    /// `Time::until`. The only difference is that this routine returns a
1308    /// `SignedDuration` and `Time::until` returns a [`Span`]. Moreover, since
1309    /// the difference is always less than 24 hours, the return values can
1310    /// always be infallibly and losslessly converted between each other:
1311    ///
1312    /// ```
1313    /// use jiff::{civil::time, SignedDuration, Span};
1314    ///
1315    /// let t1 = time(22, 35, 1, 0);
1316    /// let t2 = time(22, 35, 3, 500_000_000);
1317    /// let dur = t1.duration_until(t2);
1318    /// // Guaranteed to never fail because the duration
1319    /// // between two civil times never exceeds the limits
1320    /// // of a `Span`.
1321    /// let span = Span::try_from(dur).unwrap();
1322    /// assert_eq!(span, Span::new().seconds(2).milliseconds(500).fieldwise());
1323    /// // Guaranteed to succeed and always return the original
1324    /// // duration because the units are always hours or smaller,
1325    /// // and thus uniform. This means a relative datetime is
1326    /// // never required to do this conversion.
1327    /// let dur = SignedDuration::try_from(span).unwrap();
1328    /// assert_eq!(dur, SignedDuration::new(2, 500_000_000));
1329    /// ```
1330    ///
1331    /// This conversion guarantee also applies to [`Time::until`] since it
1332    /// always returns a balanced span. That is, it never returns spans like
1333    /// `1 second 1000 milliseconds`. (Those cannot be losslessly converted to
1334    /// a `SignedDuration` since a `SignedDuration` is only represented as a
1335    /// single 96-bit integer of nanoseconds.)
1336    ///
1337    /// # Example: getting an unsigned duration
1338    ///
1339    /// If you're looking to find the duration between two times as a
1340    /// [`std::time::Duration`], you'll need to use this method to get a
1341    /// [`SignedDuration`] and then convert it to a `std::time::Duration`:
1342    ///
1343    /// ```
1344    /// use std::time::Duration;
1345    ///
1346    /// use jiff::{civil::time, SignedDuration, Span};
1347    ///
1348    /// let t1 = time(22, 35, 1, 0);
1349    /// let t2 = time(22, 35, 3, 500_000_000);
1350    /// let dur = Duration::try_from(t1.duration_until(t2))?;;
1351    /// assert_eq!(dur, Duration::new(2, 500_000_000));
1352    ///
1353    /// // Note that unsigned durations cannot represent all
1354    /// // possible differences! If the duration would be negative,
1355    /// // then the conversion fails:
1356    /// assert!(Duration::try_from(t2.duration_until(t1)).is_err());
1357    ///
1358    /// # Ok::<(), Box<dyn std::error::Error>>(())
1359    /// ```
1360    #[inline]
1361    pub fn duration_until(self, other: Time) -> SignedDuration {
1362        SignedDuration::time_until(self, other)
1363    }
1364
1365    /// This routine is identical to [`Time::duration_until`], but the order of
1366    /// the parameters is flipped.
1367    ///
1368    /// # Example
1369    ///
1370    /// ```
1371    /// use jiff::{civil::time, SignedDuration};
1372    ///
1373    /// let earlier = time(1, 0, 0, 0);
1374    /// let later = time(22, 30, 0, 0);
1375    /// assert_eq!(
1376    ///     later.duration_since(earlier),
1377    ///     SignedDuration::from_secs((21 * 60 * 60) + (30 * 60)),
1378    /// );
1379    /// ```
1380    #[inline]
1381    pub fn duration_since(self, other: Time) -> SignedDuration {
1382        SignedDuration::time_until(other, self)
1383    }
1384
1385    /// Rounds this time according to the [`TimeRound`] configuration given.
1386    ///
1387    /// The principal option is [`TimeRound::smallest`], which allows one
1388    /// to configure the smallest units in the returned time. Rounding
1389    /// is what determines whether that unit should keep its current value
1390    /// or whether it should be incremented. Moreover, the amount it should
1391    /// be incremented can be configured via [`TimeRound::increment`].
1392    /// Finally, the rounding strategy itself can be configured via
1393    /// [`TimeRound::mode`].
1394    ///
1395    /// Note that this routine is generic and accepts anything that
1396    /// implements `Into<TimeRound>`. Some notable implementations are:
1397    ///
1398    /// * `From<Unit> for Round`, which will automatically create a
1399    /// `TimeRound::new().smallest(unit)` from the unit provided.
1400    /// * `From<(Unit, i64)> for Round`, which will automatically create a
1401    /// `TimeRound::new().smallest(unit).increment(number)` from the unit
1402    /// and increment provided.
1403    ///
1404    /// # Errors
1405    ///
1406    /// This returns an error if the smallest unit configured on the given
1407    /// [`TimeRound`] is bigger than hours.
1408    ///
1409    /// The rounding increment must divide evenly into the next highest unit
1410    /// after the smallest unit configured (and must not be equivalent to it).
1411    /// For example, if the smallest unit is [`Unit::Nanosecond`], then *some*
1412    /// of the valid values for the rounding increment are `1`, `2`, `4`, `5`,
1413    /// `100` and `500`. Namely, any integer that divides evenly into `1,000`
1414    /// nanoseconds since there are `1,000` nanoseconds in the next highest
1415    /// unit (microseconds).
1416    ///
1417    /// This can never fail because of overflow for any input. The only
1418    /// possible errors are "configuration" errors.
1419    ///
1420    /// # Example
1421    ///
1422    /// This is a basic example that demonstrates rounding a datetime to the
1423    /// nearest second. This also demonstrates calling this method with the
1424    /// smallest unit directly, instead of constructing a `TimeRound` manually.
1425    ///
1426    /// ```
1427    /// use jiff::{civil::time, Unit};
1428    ///
1429    /// let t = time(15, 45, 10, 123_456_789);
1430    /// assert_eq!(
1431    ///     t.round(Unit::Second)?,
1432    ///     time(15, 45, 10, 0),
1433    /// );
1434    /// let t = time(15, 45, 10, 500_000_001);
1435    /// assert_eq!(
1436    ///     t.round(Unit::Second)?,
1437    ///     time(15, 45, 11, 0),
1438    /// );
1439    ///
1440    /// # Ok::<(), Box<dyn std::error::Error>>(())
1441    /// ```
1442    ///
1443    /// # Example: changing the rounding mode
1444    ///
1445    /// The default rounding mode is [`RoundMode::HalfExpand`], which
1446    /// breaks ties by rounding away from zero. But other modes like
1447    /// [`RoundMode::Trunc`] can be used too:
1448    ///
1449    /// ```
1450    /// use jiff::{civil::{TimeRound, time}, RoundMode, Unit};
1451    ///
1452    /// let t = time(15, 45, 10, 999_999_999);
1453    /// assert_eq!(
1454    ///     t.round(Unit::Second)?,
1455    ///     time(15, 45, 11, 0),
1456    /// );
1457    /// // The default will round up to the next second for any fraction
1458    /// // greater than or equal to 0.5. But truncation will always round
1459    /// // toward zero.
1460    /// assert_eq!(
1461    ///     t.round(
1462    ///         TimeRound::new().smallest(Unit::Second).mode(RoundMode::Trunc),
1463    ///     )?,
1464    ///     time(15, 45, 10, 0),
1465    /// );
1466    ///
1467    /// # Ok::<(), Box<dyn std::error::Error>>(())
1468    /// ```
1469    ///
1470    /// # Example: rounding to the nearest 5 minute increment
1471    ///
1472    /// ```
1473    /// use jiff::{civil::time, Unit};
1474    ///
1475    /// // rounds down
1476    /// let t = time(15, 27, 29, 999_999_999);
1477    /// assert_eq!(t.round((Unit::Minute, 5))?, time(15, 25, 0, 0));
1478    /// // rounds up
1479    /// let t = time(15, 27, 30, 0);
1480    /// assert_eq!(t.round((Unit::Minute, 5))?, time(15, 30, 0, 0));
1481    ///
1482    /// # Ok::<(), Box<dyn std::error::Error>>(())
1483    /// ```
1484    ///
1485    /// # Example: rounding wraps around on overflow
1486    ///
1487    /// This example demonstrates that it's possible for this operation to
1488    /// overflow, and as a result, have the time wrap around.
1489    ///
1490    /// ```
1491    /// use jiff::{civil::Time, Unit};
1492    ///
1493    /// let t = Time::MAX;
1494    /// assert_eq!(t.round(Unit::Hour)?, Time::MIN);
1495    ///
1496    /// # Ok::<(), Box<dyn std::error::Error>>(())
1497    /// ```
1498    #[inline]
1499    pub fn round<R: Into<TimeRound>>(self, options: R) -> Result<Time, Error> {
1500        let options: TimeRound = options.into();
1501        options.round(self)
1502    }
1503
1504    /// Return an iterator of periodic times determined by the given span.
1505    ///
1506    /// The given span may be negative, in which case, the iterator will move
1507    /// backwards through time. The iterator won't stop until either the span
1508    /// itself overflows, or it would otherwise exceed the minimum or maximum
1509    /// `Time` value.
1510    ///
1511    /// # Example: visiting every third hour
1512    ///
1513    /// This shows how to visit each third hour of a 24 hour time interval:
1514    ///
1515    /// ```
1516    /// use jiff::{civil::{Time, time}, ToSpan};
1517    ///
1518    /// let start = Time::MIN;
1519    /// let mut every_third_hour = vec![];
1520    /// for t in start.series(3.hours()) {
1521    ///     every_third_hour.push(t);
1522    /// }
1523    /// assert_eq!(every_third_hour, vec![
1524    ///     time(0, 0, 0, 0),
1525    ///     time(3, 0, 0, 0),
1526    ///     time(6, 0, 0, 0),
1527    ///     time(9, 0, 0, 0),
1528    ///     time(12, 0, 0, 0),
1529    ///     time(15, 0, 0, 0),
1530    ///     time(18, 0, 0, 0),
1531    ///     time(21, 0, 0, 0),
1532    /// ]);
1533    /// ```
1534    ///
1535    /// Or go backwards every 6.5 hours:
1536    ///
1537    /// ```
1538    /// use jiff::{civil::{Time, time}, ToSpan};
1539    ///
1540    /// let start = time(23, 0, 0, 0);
1541    /// let times: Vec<Time> = start.series(-6.hours().minutes(30)).collect();
1542    /// assert_eq!(times, vec![
1543    ///     time(23, 0, 0, 0),
1544    ///     time(16, 30, 0, 0),
1545    ///     time(10, 0, 0, 0),
1546    ///     time(3, 30, 0, 0),
1547    /// ]);
1548    /// ```
1549    #[inline]
1550    pub fn series(self, period: Span) -> TimeSeries {
1551        TimeSeries { start: self, period, step: 0 }
1552    }
1553}
1554
1555/// Parsing and formatting using a "printf"-style API.
1556impl Time {
1557    /// Parses a civil time in `input` matching the given `format`.
1558    ///
1559    /// The format string uses a "printf"-style API where conversion
1560    /// specifiers can be used as place holders to match components of
1561    /// a datetime. For details on the specifiers supported, see the
1562    /// [`fmt::strtime`] module documentation.
1563    ///
1564    /// # Errors
1565    ///
1566    /// This returns an error when parsing failed. This might happen because
1567    /// the format string itself was invalid, or because the input didn't match
1568    /// the format string.
1569    ///
1570    /// This also returns an error if there wasn't sufficient information to
1571    /// construct a civil time. For example, if an offset wasn't parsed.
1572    ///
1573    /// # Example
1574    ///
1575    /// This example shows how to parse a civil time:
1576    ///
1577    /// ```
1578    /// use jiff::civil::Time;
1579    ///
1580    /// // Parse with a 12-hour clock.
1581    /// let time = Time::strptime("%I:%M%P", "4:30pm")?;
1582    /// assert_eq!(time.to_string(), "16:30:00");
1583    ///
1584    /// # Ok::<(), Box<dyn std::error::Error>>(())
1585    /// ```
1586    #[inline]
1587    pub fn strptime(
1588        format: impl AsRef<[u8]>,
1589        input: impl AsRef<[u8]>,
1590    ) -> Result<Time, Error> {
1591        fmt::strtime::parse(format, input).and_then(|tm| tm.to_time())
1592    }
1593
1594    /// Formats this civil time according to the given `format`.
1595    ///
1596    /// The format string uses a "printf"-style API where conversion
1597    /// specifiers can be used as place holders to format components of
1598    /// a datetime. For details on the specifiers supported, see the
1599    /// [`fmt::strtime`] module documentation.
1600    ///
1601    /// # Errors and panics
1602    ///
1603    /// While this routine itself does not error or panic, using the value
1604    /// returned may result in a panic if formatting fails. See the
1605    /// documentation on [`fmt::strtime::Display`] for more information.
1606    ///
1607    /// To format in a way that surfaces errors without panicking, use either
1608    /// [`fmt::strtime::format`] or [`fmt::strtime::BrokenDownTime::format`].
1609    ///
1610    /// # Example
1611    ///
1612    /// This example shows how to format a civil time in a 12 hour clock with
1613    /// no padding for the hour:
1614    ///
1615    /// ```
1616    /// use jiff::civil::time;
1617    ///
1618    /// let t = time(16, 30, 59, 0);
1619    /// let string = t.strftime("%-I:%M%P").to_string();
1620    /// assert_eq!(string, "4:30pm");
1621    /// ```
1622    ///
1623    /// Note that one can round a `Time` before formatting. For example, to
1624    /// round to the nearest minute:
1625    ///
1626    /// ```
1627    /// use jiff::{civil::time, Unit};
1628    ///
1629    /// let t = time(16, 30, 59, 0);
1630    /// let string = t.round(Unit::Minute)?.strftime("%-I:%M%P").to_string();
1631    /// assert_eq!(string, "4:31pm");
1632    ///
1633    /// # Ok::<(), Box<dyn std::error::Error>>(())
1634    /// ```
1635    #[inline]
1636    pub fn strftime<'f, F: 'f + ?Sized + AsRef<[u8]>>(
1637        &self,
1638        format: &'f F,
1639    ) -> fmt::strtime::Display<'f> {
1640        fmt::strtime::Display { fmt: format.as_ref(), tm: (*self).into() }
1641    }
1642}
1643
1644/// Crate internal APIs.
1645///
1646/// Many of these are mirrors of the public API, but on ranged types. These
1647/// are often much more convenient to use in composition with other parts of
1648/// the crate that also use ranged integer types. And this often permits the
1649/// routines to be infallible and (possibly) zero-cost.
1650impl Time {
1651    #[inline]
1652    pub(crate) fn new_ranged(
1653        hour: impl RInto<Hour>,
1654        minute: impl RInto<Minute>,
1655        second: impl RInto<Second>,
1656        subsec_nanosecond: impl RInto<SubsecNanosecond>,
1657    ) -> Time {
1658        Time {
1659            hour: hour.rinto(),
1660            minute: minute.rinto(),
1661            second: second.rinto(),
1662            subsec_nanosecond: subsec_nanosecond.rinto(),
1663        }
1664    }
1665
1666    #[inline]
1667    pub(crate) fn new_ranged_unchecked(
1668        hour: Hour,
1669        minute: Minute,
1670        second: Second,
1671        subsec_nanosecond: SubsecNanosecond,
1672    ) -> Time {
1673        Time { hour, minute, second, subsec_nanosecond }
1674    }
1675
1676    /// Set the fractional parts of this time to the given units via ranged
1677    /// types.
1678    #[inline]
1679    fn with_subsec_parts_ranged(
1680        self,
1681        millisecond: impl RInto<Millisecond>,
1682        microsecond: impl RInto<Microsecond>,
1683        nanosecond: impl RInto<Nanosecond>,
1684    ) -> Time {
1685        let millisecond = SubsecNanosecond::rfrom(millisecond.rinto());
1686        let microsecond = SubsecNanosecond::rfrom(microsecond.rinto());
1687        let nanosecond = SubsecNanosecond::rfrom(nanosecond.rinto());
1688        let mut subsec_nanosecond =
1689            millisecond * t::MICROS_PER_MILLI * t::NANOS_PER_MICRO;
1690        subsec_nanosecond += microsecond * t::NANOS_PER_MICRO;
1691        subsec_nanosecond += nanosecond;
1692        Time { subsec_nanosecond: subsec_nanosecond.rinto(), ..self }
1693    }
1694
1695    #[inline]
1696    pub(crate) fn hour_ranged(self) -> Hour {
1697        self.hour
1698    }
1699
1700    #[inline]
1701    pub(crate) fn minute_ranged(self) -> Minute {
1702        self.minute
1703    }
1704
1705    #[inline]
1706    pub(crate) fn second_ranged(self) -> Second {
1707        self.second
1708    }
1709
1710    #[inline]
1711    pub(crate) fn millisecond_ranged(self) -> Millisecond {
1712        let micros = self.subsec_nanosecond_ranged() / t::NANOS_PER_MICRO;
1713        let millis = micros / t::MICROS_PER_MILLI;
1714        millis.rinto()
1715    }
1716
1717    #[inline]
1718    pub(crate) fn microsecond_ranged(self) -> Microsecond {
1719        let micros = self.subsec_nanosecond_ranged() / t::NANOS_PER_MICRO;
1720        let only_micros = micros % t::MICROS_PER_MILLI;
1721        only_micros.rinto()
1722    }
1723
1724    #[inline]
1725    pub(crate) fn nanosecond_ranged(self) -> Nanosecond {
1726        let only_nanos = self.subsec_nanosecond_ranged() % t::NANOS_PER_MICRO;
1727        only_nanos.rinto()
1728    }
1729
1730    #[inline]
1731    pub(crate) fn subsec_nanosecond_ranged(self) -> SubsecNanosecond {
1732        self.subsec_nanosecond
1733    }
1734
1735    #[inline]
1736    pub(crate) fn until_nanoseconds(self, other: Time) -> t::SpanNanoseconds {
1737        let t1 = t::SpanNanoseconds::rfrom(self.to_nanosecond());
1738        let t2 = t::SpanNanoseconds::rfrom(other.to_nanosecond());
1739        t2 - t1
1740    }
1741
1742    /// Converts this time value to the number of nanoseconds that has elapsed
1743    /// since `00:00:00.000000000`.
1744    ///
1745    /// The maximum possible value that can be returned represents the time
1746    /// `23:59:59.999999999`.
1747    #[inline]
1748    pub(crate) fn to_nanosecond(&self) -> CivilDayNanosecond {
1749        #[cfg(not(debug_assertions))]
1750        {
1751            CivilDayNanosecond {
1752                val: to_day_nanosecond(
1753                    self.hour.val,
1754                    self.minute.val,
1755                    self.second.val,
1756                    self.subsec_nanosecond.val,
1757                ),
1758            }
1759        }
1760        #[cfg(debug_assertions)]
1761        {
1762            let val = to_day_nanosecond(
1763                self.hour.val,
1764                self.minute.val,
1765                self.second.val,
1766                self.subsec_nanosecond.val,
1767            );
1768            let min = to_day_nanosecond(
1769                self.hour.min,
1770                self.minute.min,
1771                self.second.min,
1772                self.subsec_nanosecond.min,
1773            );
1774            let max = to_day_nanosecond(
1775                self.hour.max,
1776                self.minute.max,
1777                self.second.max,
1778                self.subsec_nanosecond.max,
1779            );
1780            CivilDayNanosecond { val, min, max }
1781        }
1782    }
1783
1784    /// Converts the given nanosecond to a time value. The nanosecond should
1785    /// correspond to the number of nanoseconds that have elapsed since
1786    /// `00:00:00.000000000`.
1787    #[inline(always)]
1788    pub(crate) fn from_nanosecond(nanosecond: CivilDayNanosecond) -> Time {
1789        #[cfg(not(debug_assertions))]
1790        {
1791            let (hour, minute, second, subsec) =
1792                from_day_nanosecond(nanosecond.val);
1793            Time {
1794                hour: Hour { val: hour },
1795                minute: Minute { val: minute },
1796                second: Second { val: second },
1797                subsec_nanosecond: SubsecNanosecond { val: subsec },
1798            }
1799        }
1800        #[cfg(debug_assertions)]
1801        {
1802            let (hour, minute, second, subsec) =
1803                from_day_nanosecond(nanosecond.val);
1804            let (min_hour, min_minute, min_second, min_subsec) =
1805                from_day_nanosecond(nanosecond.min);
1806            let (max_hour, max_minute, max_second, max_subsec) =
1807                from_day_nanosecond(nanosecond.max);
1808
1809            let hour = Hour { val: hour, min: min_hour, max: max_hour };
1810            let minute =
1811                Minute { val: minute, min: min_minute, max: max_minute };
1812            let second =
1813                Second { val: second, min: min_second, max: max_second };
1814            let subsec = SubsecNanosecond {
1815                val: subsec,
1816                min: min_subsec,
1817                max: max_subsec,
1818            };
1819            Time { hour, minute, second, subsec_nanosecond: subsec }
1820        }
1821    }
1822}
1823
1824impl Default for Time {
1825    #[inline]
1826    fn default() -> Time {
1827        Time::midnight()
1828    }
1829}
1830
1831/// Converts a `Time` into a human readable time string.
1832///
1833/// (This `Debug` representation currently emits the same string as the
1834/// `Display` representation, but this is not a guarantee.)
1835///
1836/// Options currently supported:
1837///
1838/// * [`std::fmt::Formatter::precision`] can be set to control the precision
1839/// of the fractional second component.
1840///
1841/// # Example
1842///
1843/// ```
1844/// use jiff::civil::time;
1845///
1846/// let t = time(7, 0, 0, 123_000_000);
1847/// assert_eq!(format!("{t:.6?}"), "07:00:00.123000");
1848/// // Precision values greater than 9 are clamped to 9.
1849/// assert_eq!(format!("{t:.300?}"), "07:00:00.123000000");
1850/// // A precision of 0 implies the entire fractional
1851/// // component is always truncated.
1852/// assert_eq!(format!("{t:.0?}"), "07:00:00");
1853///
1854/// # Ok::<(), Box<dyn std::error::Error>>(())
1855/// ```
1856impl core::fmt::Debug for Time {
1857    #[inline]
1858    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1859        core::fmt::Display::fmt(self, f)
1860    }
1861}
1862
1863/// Converts a `Time` into an ISO 8601 compliant string.
1864///
1865/// Options currently supported:
1866///
1867/// * [`std::fmt::Formatter::precision`] can be set to control the precision
1868/// of the fractional second component.
1869///
1870/// # Example
1871///
1872/// ```
1873/// use jiff::civil::time;
1874///
1875/// let t = time(7, 0, 0, 123_000_000);
1876/// assert_eq!(format!("{t:.6}"), "07:00:00.123000");
1877/// // Precision values greater than 9 are clamped to 9.
1878/// assert_eq!(format!("{t:.300}"), "07:00:00.123000000");
1879/// // A precision of 0 implies the entire fractional
1880/// // component is always truncated.
1881/// assert_eq!(format!("{t:.0}"), "07:00:00");
1882///
1883/// # Ok::<(), Box<dyn std::error::Error>>(())
1884/// ```
1885impl core::fmt::Display for Time {
1886    #[inline]
1887    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1888        use crate::fmt::StdFmtWrite;
1889
1890        let precision =
1891            f.precision().map(|p| u8::try_from(p).unwrap_or(u8::MAX));
1892        temporal::DateTimePrinter::new()
1893            .precision(precision)
1894            .print_time(self, StdFmtWrite(f))
1895            .map_err(|_| core::fmt::Error)
1896    }
1897}
1898
1899impl core::str::FromStr for Time {
1900    type Err = Error;
1901
1902    #[inline]
1903    fn from_str(string: &str) -> Result<Time, Error> {
1904        DEFAULT_DATETIME_PARSER.parse_time(string)
1905    }
1906}
1907
1908/// Adds a span of time. This uses wrapping arithmetic.
1909///
1910/// For checked arithmetic, see [`Time::checked_add`].
1911impl core::ops::Add<Span> for Time {
1912    type Output = Time;
1913
1914    #[inline]
1915    fn add(self, rhs: Span) -> Time {
1916        self.wrapping_add(rhs)
1917    }
1918}
1919
1920/// Adds a span of time in place. This uses wrapping arithmetic.
1921///
1922/// For checked arithmetic, see [`Time::checked_add`].
1923impl core::ops::AddAssign<Span> for Time {
1924    #[inline]
1925    fn add_assign(&mut self, rhs: Span) {
1926        *self = *self + rhs;
1927    }
1928}
1929
1930/// Subtracts a span of time. This uses wrapping arithmetic.
1931///
1932/// For checked arithmetic, see [`Time::checked_sub`].
1933impl core::ops::Sub<Span> for Time {
1934    type Output = Time;
1935
1936    #[inline]
1937    fn sub(self, rhs: Span) -> Time {
1938        self.wrapping_sub(rhs)
1939    }
1940}
1941
1942/// Subtracts a span of time in place. This uses wrapping arithmetic.
1943///
1944/// For checked arithmetic, see [`Time::checked_sub`].
1945impl core::ops::SubAssign<Span> for Time {
1946    #[inline]
1947    fn sub_assign(&mut self, rhs: Span) {
1948        *self = *self - rhs;
1949    }
1950}
1951
1952/// Computes the span of time between two times.
1953///
1954/// This will return a negative span when the time being subtracted is greater.
1955///
1956/// Since this uses the default configuration for calculating a span between
1957/// two times (no rounding and largest units is hours), this will never panic
1958/// or fail in any way.
1959///
1960/// To configure the largest unit or enable rounding, use [`Time::since`].
1961impl core::ops::Sub for Time {
1962    type Output = Span;
1963
1964    #[inline]
1965    fn sub(self, rhs: Time) -> Span {
1966        self.since(rhs).expect("since never fails when given Time")
1967    }
1968}
1969
1970/// Adds a signed duration of time. This uses wrapping arithmetic.
1971///
1972/// For checked arithmetic, see [`Time::checked_add`].
1973impl core::ops::Add<SignedDuration> for Time {
1974    type Output = Time;
1975
1976    #[inline]
1977    fn add(self, rhs: SignedDuration) -> Time {
1978        self.wrapping_add(rhs)
1979    }
1980}
1981
1982/// Adds a signed duration of time in place. This uses wrapping arithmetic.
1983///
1984/// For checked arithmetic, see [`Time::checked_add`].
1985impl core::ops::AddAssign<SignedDuration> for Time {
1986    #[inline]
1987    fn add_assign(&mut self, rhs: SignedDuration) {
1988        *self = *self + rhs;
1989    }
1990}
1991
1992/// Subtracts a signed duration of time. This uses wrapping arithmetic.
1993///
1994/// For checked arithmetic, see [`Time::checked_sub`].
1995impl core::ops::Sub<SignedDuration> for Time {
1996    type Output = Time;
1997
1998    #[inline]
1999    fn sub(self, rhs: SignedDuration) -> Time {
2000        self.wrapping_sub(rhs)
2001    }
2002}
2003
2004/// Subtracts a signed duration of time in place. This uses wrapping arithmetic.
2005///
2006/// For checked arithmetic, see [`Time::checked_sub`].
2007impl core::ops::SubAssign<SignedDuration> for Time {
2008    #[inline]
2009    fn sub_assign(&mut self, rhs: SignedDuration) {
2010        *self = *self - rhs;
2011    }
2012}
2013
2014/// Adds an unsigned duration of time. This uses wrapping arithmetic.
2015///
2016/// For checked arithmetic, see [`Time::checked_add`].
2017impl core::ops::Add<UnsignedDuration> for Time {
2018    type Output = Time;
2019
2020    #[inline]
2021    fn add(self, rhs: UnsignedDuration) -> Time {
2022        self.wrapping_add(rhs)
2023    }
2024}
2025
2026/// Adds an unsigned duration of time in place. This uses wrapping arithmetic.
2027///
2028/// For checked arithmetic, see [`Time::checked_add`].
2029impl core::ops::AddAssign<UnsignedDuration> for Time {
2030    #[inline]
2031    fn add_assign(&mut self, rhs: UnsignedDuration) {
2032        *self = *self + rhs;
2033    }
2034}
2035
2036/// Subtracts an unsigned duration of time. This uses wrapping arithmetic.
2037///
2038/// For checked arithmetic, see [`Time::checked_sub`].
2039impl core::ops::Sub<UnsignedDuration> for Time {
2040    type Output = Time;
2041
2042    #[inline]
2043    fn sub(self, rhs: UnsignedDuration) -> Time {
2044        self.wrapping_sub(rhs)
2045    }
2046}
2047
2048/// Subtracts an unsigned duration of time in place. This uses wrapping
2049/// arithmetic.
2050///
2051/// For checked arithmetic, see [`Time::checked_sub`].
2052impl core::ops::SubAssign<UnsignedDuration> for Time {
2053    #[inline]
2054    fn sub_assign(&mut self, rhs: UnsignedDuration) {
2055        *self = *self - rhs;
2056    }
2057}
2058
2059impl From<DateTime> for Time {
2060    #[inline]
2061    fn from(dt: DateTime) -> Time {
2062        dt.time()
2063    }
2064}
2065
2066impl From<Zoned> for Time {
2067    #[inline]
2068    fn from(zdt: Zoned) -> Time {
2069        zdt.datetime().time()
2070    }
2071}
2072
2073impl<'a> From<&'a Zoned> for Time {
2074    #[inline]
2075    fn from(zdt: &'a Zoned) -> Time {
2076        zdt.datetime().time()
2077    }
2078}
2079
2080#[cfg(feature = "serde")]
2081impl serde::Serialize for Time {
2082    #[inline]
2083    fn serialize<S: serde::Serializer>(
2084        &self,
2085        serializer: S,
2086    ) -> Result<S::Ok, S::Error> {
2087        serializer.collect_str(self)
2088    }
2089}
2090
2091#[cfg(feature = "serde")]
2092impl<'de> serde::Deserialize<'de> for Time {
2093    #[inline]
2094    fn deserialize<D: serde::Deserializer<'de>>(
2095        deserializer: D,
2096    ) -> Result<Time, D::Error> {
2097        use serde::de;
2098
2099        struct TimeVisitor;
2100
2101        impl<'de> de::Visitor<'de> for TimeVisitor {
2102            type Value = Time;
2103
2104            fn expecting(
2105                &self,
2106                f: &mut core::fmt::Formatter,
2107            ) -> core::fmt::Result {
2108                f.write_str("a time string")
2109            }
2110
2111            #[inline]
2112            fn visit_bytes<E: de::Error>(
2113                self,
2114                value: &[u8],
2115            ) -> Result<Time, E> {
2116                DEFAULT_DATETIME_PARSER
2117                    .parse_time(value)
2118                    .map_err(de::Error::custom)
2119            }
2120
2121            #[inline]
2122            fn visit_str<E: de::Error>(self, value: &str) -> Result<Time, E> {
2123                self.visit_bytes(value.as_bytes())
2124            }
2125        }
2126
2127        deserializer.deserialize_str(TimeVisitor)
2128    }
2129}
2130
2131#[cfg(test)]
2132impl quickcheck::Arbitrary for Time {
2133    fn arbitrary(g: &mut quickcheck::Gen) -> Time {
2134        let hour = Hour::arbitrary(g);
2135        let minute = Minute::arbitrary(g);
2136        let second = Second::arbitrary(g);
2137        let subsec_nanosecond = SubsecNanosecond::arbitrary(g);
2138        Time::new_ranged(hour, minute, second, subsec_nanosecond)
2139    }
2140
2141    fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Time>> {
2142        alloc::boxed::Box::new(
2143            (
2144                self.hour_ranged(),
2145                self.minute_ranged(),
2146                self.second_ranged(),
2147                self.subsec_nanosecond_ranged(),
2148            )
2149                .shrink()
2150                .map(
2151                    |(hour, minute, second, subsec_nanosecond)| {
2152                        Time::new_ranged(
2153                            hour,
2154                            minute,
2155                            second,
2156                            subsec_nanosecond,
2157                        )
2158                    },
2159                ),
2160        )
2161    }
2162}
2163
2164/// An iterator over periodic times, created by [`Time::series`].
2165///
2166/// It is exhausted when the next value would exceed a [`Span`] or [`Time`]
2167/// value.
2168#[derive(Clone, Debug)]
2169pub struct TimeSeries {
2170    start: Time,
2171    period: Span,
2172    step: i64,
2173}
2174
2175impl Iterator for TimeSeries {
2176    type Item = Time;
2177
2178    #[inline]
2179    fn next(&mut self) -> Option<Time> {
2180        let span = self.period.checked_mul(self.step).ok()?;
2181        self.step = self.step.checked_add(1)?;
2182        let time = self.start.checked_add(span).ok()?;
2183        Some(time)
2184    }
2185}
2186
2187/// Options for [`Time::checked_add`] and [`Time::checked_sub`].
2188///
2189/// This type provides a way to ergonomically add one of a few different
2190/// duration types to a [`Time`].
2191///
2192/// The main way to construct values of this type is with its `From` trait
2193/// implementations:
2194///
2195/// * `From<Span> for TimeArithmetic` adds (or subtracts) the given span to the
2196/// receiver time.
2197/// * `From<SignedDuration> for TimeArithmetic` adds (or subtracts)
2198/// the given signed duration to the receiver time.
2199/// * `From<std::time::Duration> for TimeArithmetic` adds (or subtracts)
2200/// the given unsigned duration to the receiver time.
2201///
2202/// # Example
2203///
2204/// ```
2205/// use std::time::Duration;
2206///
2207/// use jiff::{civil::time, SignedDuration, ToSpan};
2208///
2209/// let t = time(0, 0, 0, 0);
2210/// assert_eq!(t.checked_add(2.hours())?, time(2, 0, 0, 0));
2211/// assert_eq!(t.checked_add(SignedDuration::from_hours(2))?, time(2, 0, 0, 0));
2212/// assert_eq!(t.checked_add(Duration::from_secs(2 * 60 * 60))?, time(2, 0, 0, 0));
2213///
2214/// # Ok::<(), Box<dyn std::error::Error>>(())
2215/// ```
2216#[derive(Clone, Copy, Debug)]
2217pub struct TimeArithmetic {
2218    duration: Duration,
2219}
2220
2221impl TimeArithmetic {
2222    #[inline]
2223    fn wrapping_add(self, time: Time) -> Time {
2224        match self.duration {
2225            Duration::Span(span) => time.wrapping_add_span(span),
2226            Duration::Signed(sdur) => time.wrapping_add_signed_duration(sdur),
2227            Duration::Unsigned(udur) => {
2228                time.wrapping_add_unsigned_duration(udur)
2229            }
2230        }
2231    }
2232
2233    #[inline]
2234    fn wrapping_sub(self, time: Time) -> Time {
2235        match self.duration {
2236            Duration::Span(span) => time.wrapping_add_span(span.negate()),
2237            Duration::Signed(sdur) => {
2238                if let Some(sdur) = sdur.checked_neg() {
2239                    time.wrapping_add_signed_duration(sdur)
2240                } else {
2241                    let udur = UnsignedDuration::new(
2242                        i64::MIN.unsigned_abs(),
2243                        sdur.subsec_nanos().unsigned_abs(),
2244                    );
2245                    time.wrapping_add_unsigned_duration(udur)
2246                }
2247            }
2248            Duration::Unsigned(udur) => {
2249                time.wrapping_sub_unsigned_duration(udur)
2250            }
2251        }
2252    }
2253
2254    #[inline]
2255    fn checked_add(self, time: Time) -> Result<Time, Error> {
2256        match self.duration.to_signed()? {
2257            SDuration::Span(span) => time.checked_add_span(span),
2258            SDuration::Absolute(sdur) => time.checked_add_duration(sdur),
2259        }
2260    }
2261
2262    #[inline]
2263    fn checked_neg(self) -> Result<TimeArithmetic, Error> {
2264        let duration = self.duration.checked_neg()?;
2265        Ok(TimeArithmetic { duration })
2266    }
2267
2268    #[inline]
2269    fn is_negative(&self) -> bool {
2270        self.duration.is_negative()
2271    }
2272}
2273
2274impl From<Span> for TimeArithmetic {
2275    fn from(span: Span) -> TimeArithmetic {
2276        let duration = Duration::from(span);
2277        TimeArithmetic { duration }
2278    }
2279}
2280
2281impl From<SignedDuration> for TimeArithmetic {
2282    fn from(sdur: SignedDuration) -> TimeArithmetic {
2283        let duration = Duration::from(sdur);
2284        TimeArithmetic { duration }
2285    }
2286}
2287
2288impl From<UnsignedDuration> for TimeArithmetic {
2289    fn from(udur: UnsignedDuration) -> TimeArithmetic {
2290        let duration = Duration::from(udur);
2291        TimeArithmetic { duration }
2292    }
2293}
2294
2295impl<'a> From<&'a Span> for TimeArithmetic {
2296    fn from(span: &'a Span) -> TimeArithmetic {
2297        TimeArithmetic::from(*span)
2298    }
2299}
2300
2301impl<'a> From<&'a SignedDuration> for TimeArithmetic {
2302    fn from(sdur: &'a SignedDuration) -> TimeArithmetic {
2303        TimeArithmetic::from(*sdur)
2304    }
2305}
2306
2307impl<'a> From<&'a UnsignedDuration> for TimeArithmetic {
2308    fn from(udur: &'a UnsignedDuration) -> TimeArithmetic {
2309        TimeArithmetic::from(*udur)
2310    }
2311}
2312
2313/// Options for [`Time::since`] and [`Time::until`].
2314///
2315/// This type provides a way to configure the calculation of spans between two
2316/// [`Time`] values. In particular, both `Time::since` and `Time::until` accept
2317/// anything that implements `Into<TimeDifference>`. There are a few key trait
2318/// implementations that make this convenient:
2319///
2320/// * `From<Time> for TimeDifference` will construct a configuration consisting
2321/// of just the time. So for example, `time1.until(time2)` will return the span
2322/// from `time1` to `time2`.
2323/// * `From<DateTime> for TimeDifference` will construct a configuration
2324/// consisting of just the time from the given datetime. So for example,
2325/// `time.since(datetime)` returns the span from `datetime.time()` to `time`.
2326/// * `From<(Unit, Time)>` is a convenient way to specify the largest units
2327/// that should be present on the span returned. By default, the largest units
2328/// are hours. Using this trait implementation is equivalent to
2329/// `TimeDifference::new(time).largest(unit)`.
2330/// * `From<(Unit, DateTime)>` is like the one above, but with the time from
2331/// the given datetime.
2332///
2333/// One can also provide a `TimeDifference` value directly. Doing so
2334/// is necessary to use the rounding features of calculating a span. For
2335/// example, setting the smallest unit (defaults to [`Unit::Nanosecond`]), the
2336/// rounding mode (defaults to [`RoundMode::Trunc`]) and the rounding increment
2337/// (defaults to `1`). The defaults are selected such that no rounding occurs.
2338///
2339/// Rounding a span as part of calculating it is provided as a convenience.
2340/// Callers may choose to round the span as a distinct step via
2341/// [`Span::round`].
2342///
2343/// # Example
2344///
2345/// This example shows how to round a span between two datetimes to the nearest
2346/// half-hour, with ties breaking away from zero.
2347///
2348/// ```
2349/// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit};
2350///
2351/// let t1 = "08:14:00.123456789".parse::<Time>()?;
2352/// let t2 = "15:00".parse::<Time>()?;
2353/// let span = t1.until(
2354///     TimeDifference::new(t2)
2355///         .smallest(Unit::Minute)
2356///         .mode(RoundMode::HalfExpand)
2357///         .increment(30),
2358/// )?;
2359/// assert_eq!(span, 7.hours().fieldwise());
2360///
2361/// // One less minute, and because of the HalfExpand mode, the span would
2362/// // get rounded down.
2363/// let t2 = "14:59".parse::<Time>()?;
2364/// let span = t1.until(
2365///     TimeDifference::new(t2)
2366///         .smallest(Unit::Minute)
2367///         .mode(RoundMode::HalfExpand)
2368///         .increment(30),
2369/// )?;
2370/// assert_eq!(span, 6.hours().minutes(30).fieldwise());
2371///
2372/// # Ok::<(), Box<dyn std::error::Error>>(())
2373/// ```
2374#[derive(Clone, Copy, Debug)]
2375pub struct TimeDifference {
2376    time: Time,
2377    round: SpanRound<'static>,
2378}
2379
2380impl TimeDifference {
2381    /// Create a new default configuration for computing the span between
2382    /// the given time and some other time (specified as the receiver in
2383    /// [`Time::since`] or [`Time::until`]).
2384    #[inline]
2385    pub fn new(time: Time) -> TimeDifference {
2386        // We use truncation rounding by default since it seems that's
2387        // what is generally expected when computing the difference between
2388        // datetimes.
2389        //
2390        // See: https://github.com/tc39/proposal-temporal/issues/1122
2391        let round = SpanRound::new().mode(RoundMode::Trunc);
2392        TimeDifference { time, round }
2393    }
2394
2395    /// Set the smallest units allowed in the span returned.
2396    ///
2397    /// # Errors
2398    ///
2399    /// The smallest units must be no greater than the largest units. If this
2400    /// is violated, then computing a span with this configuration will result
2401    /// in an error.
2402    ///
2403    /// # Example
2404    ///
2405    /// This shows how to round a span between two times to units no less than
2406    /// seconds.
2407    ///
2408    /// ```
2409    /// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit};
2410    ///
2411    /// let t1 = "08:14:02.5001".parse::<Time>()?;
2412    /// let t2 = "08:30:03.0001".parse::<Time>()?;
2413    /// let span = t1.until(
2414    ///     TimeDifference::new(t2)
2415    ///         .smallest(Unit::Second)
2416    ///         .mode(RoundMode::HalfExpand),
2417    /// )?;
2418    /// assert_eq!(span, 16.minutes().seconds(1).fieldwise());
2419    ///
2420    /// # Ok::<(), Box<dyn std::error::Error>>(())
2421    /// ```
2422    #[inline]
2423    pub fn smallest(self, unit: Unit) -> TimeDifference {
2424        TimeDifference { round: self.round.smallest(unit), ..self }
2425    }
2426
2427    /// Set the largest units allowed in the span returned.
2428    ///
2429    /// When a largest unit is not specified, computing a span between times
2430    /// behaves as if it were set to [`Unit::Hour`].
2431    ///
2432    /// # Errors
2433    ///
2434    /// The largest units, when set, must be at least as big as the smallest
2435    /// units (which defaults to [`Unit::Nanosecond`]). If this is violated,
2436    /// then computing a span with this configuration will result in an error.
2437    ///
2438    /// # Example
2439    ///
2440    /// This shows how to round a span between two times to units no
2441    /// bigger than seconds.
2442    ///
2443    /// ```
2444    /// use jiff::{civil::{Time, TimeDifference}, ToSpan, Unit};
2445    ///
2446    /// let t1 = "08:14".parse::<Time>()?;
2447    /// let t2 = "08:30".parse::<Time>()?;
2448    /// let span = t1.until(TimeDifference::new(t2).largest(Unit::Second))?;
2449    /// assert_eq!(span, 960.seconds().fieldwise());
2450    ///
2451    /// # Ok::<(), Box<dyn std::error::Error>>(())
2452    /// ```
2453    #[inline]
2454    pub fn largest(self, unit: Unit) -> TimeDifference {
2455        TimeDifference { round: self.round.largest(unit), ..self }
2456    }
2457
2458    /// Set the rounding mode.
2459    ///
2460    /// This defaults to [`RoundMode::Trunc`] since it's plausible that
2461    /// rounding "up" in the context of computing the span between two times
2462    /// could be surprising in a number of cases. The [`RoundMode::HalfExpand`]
2463    /// mode corresponds to typical rounding you might have learned about in
2464    /// school. But a variety of other rounding modes exist.
2465    ///
2466    /// # Example
2467    ///
2468    /// This shows how to always round "up" towards positive infinity.
2469    ///
2470    /// ```
2471    /// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit};
2472    ///
2473    /// let t1 = "08:10".parse::<Time>()?;
2474    /// let t2 = "08:11".parse::<Time>()?;
2475    /// let span = t1.until(
2476    ///     TimeDifference::new(t2)
2477    ///         .smallest(Unit::Hour)
2478    ///         .mode(RoundMode::Ceil),
2479    /// )?;
2480    /// // Only one minute elapsed, but we asked to always round up!
2481    /// assert_eq!(span, 1.hour().fieldwise());
2482    ///
2483    /// // Since `Ceil` always rounds toward positive infinity, the behavior
2484    /// // flips for a negative span.
2485    /// let span = t1.since(
2486    ///     TimeDifference::new(t2)
2487    ///         .smallest(Unit::Hour)
2488    ///         .mode(RoundMode::Ceil),
2489    /// )?;
2490    /// assert_eq!(span, 0.hour().fieldwise());
2491    ///
2492    /// # Ok::<(), Box<dyn std::error::Error>>(())
2493    /// ```
2494    #[inline]
2495    pub fn mode(self, mode: RoundMode) -> TimeDifference {
2496        TimeDifference { round: self.round.mode(mode), ..self }
2497    }
2498
2499    /// Set the rounding increment for the smallest unit.
2500    ///
2501    /// The default value is `1`. Other values permit rounding the smallest
2502    /// unit to the nearest integer increment specified. For example, if the
2503    /// smallest unit is set to [`Unit::Minute`], then a rounding increment of
2504    /// `30` would result in rounding in increments of a half hour. That is,
2505    /// the only minute value that could result would be `0` or `30`.
2506    ///
2507    /// # Errors
2508    ///
2509    /// The rounding increment must divide evenly into the next highest unit
2510    /// after the smallest unit configured (and must not be equivalent to it).
2511    /// For example, if the smallest unit is [`Unit::Nanosecond`], then *some*
2512    /// of the valid values for the rounding increment are `1`, `2`, `4`, `5`,
2513    /// `100` and `500`. Namely, any integer that divides evenly into `1,000`
2514    /// nanoseconds since there are `1,000` nanoseconds in the next highest
2515    /// unit (microseconds).
2516    ///
2517    /// The error will occur when computing the span, and not when setting
2518    /// the increment here.
2519    ///
2520    /// # Example
2521    ///
2522    /// This shows how to round the span between two times to the nearest 5
2523    /// minute increment.
2524    ///
2525    /// ```
2526    /// use jiff::{civil::{Time, TimeDifference}, RoundMode, ToSpan, Unit};
2527    ///
2528    /// let t1 = "08:19".parse::<Time>()?;
2529    /// let t2 = "12:52".parse::<Time>()?;
2530    /// let span = t1.until(
2531    ///     TimeDifference::new(t2)
2532    ///         .smallest(Unit::Minute)
2533    ///         .increment(5)
2534    ///         .mode(RoundMode::HalfExpand),
2535    /// )?;
2536    /// assert_eq!(span, 4.hour().minutes(35).fieldwise());
2537    ///
2538    /// # Ok::<(), Box<dyn std::error::Error>>(())
2539    /// ```
2540    #[inline]
2541    pub fn increment(self, increment: i64) -> TimeDifference {
2542        TimeDifference { round: self.round.increment(increment), ..self }
2543    }
2544
2545    /// Returns true if and only if this configuration could change the span
2546    /// via rounding.
2547    #[inline]
2548    fn rounding_may_change_span(&self) -> bool {
2549        self.round.rounding_may_change_span_ignore_largest()
2550    }
2551
2552    /// Returns the span of time from `t1` to the time in this configuration.
2553    /// The biggest units allowed are determined by the `smallest` and
2554    /// `largest` settings, but defaults to `Unit::Hour`.
2555    #[inline]
2556    fn until_with_largest_unit(&self, t1: Time) -> Result<Span, Error> {
2557        let t2 = self.time;
2558        if t1 == t2 {
2559            return Ok(Span::new());
2560        }
2561        let largest = self.round.get_largest().unwrap_or(Unit::Hour);
2562        if largest > Unit::Hour {
2563            return Err(err!(
2564                "rounding the span between two times must use hours \
2565                 or smaller for its units, but found {units}",
2566                units = largest.plural(),
2567            ));
2568        }
2569        let start = t1.to_nanosecond();
2570        let end = t2.to_nanosecond();
2571        let span = Span::from_invariant_nanoseconds(largest, end - start)
2572            .expect("difference in civil times is always in bounds");
2573        Ok(span)
2574    }
2575}
2576
2577impl From<Time> for TimeDifference {
2578    #[inline]
2579    fn from(time: Time) -> TimeDifference {
2580        TimeDifference::new(time)
2581    }
2582}
2583
2584impl From<DateTime> for TimeDifference {
2585    #[inline]
2586    fn from(dt: DateTime) -> TimeDifference {
2587        TimeDifference::from(Time::from(dt))
2588    }
2589}
2590
2591impl From<Zoned> for TimeDifference {
2592    #[inline]
2593    fn from(zdt: Zoned) -> TimeDifference {
2594        TimeDifference::from(Time::from(zdt))
2595    }
2596}
2597
2598impl<'a> From<&'a Zoned> for TimeDifference {
2599    #[inline]
2600    fn from(zdt: &'a Zoned) -> TimeDifference {
2601        TimeDifference::from(zdt.datetime())
2602    }
2603}
2604
2605impl From<(Unit, Time)> for TimeDifference {
2606    #[inline]
2607    fn from((largest, time): (Unit, Time)) -> TimeDifference {
2608        TimeDifference::from(time).largest(largest)
2609    }
2610}
2611
2612impl From<(Unit, DateTime)> for TimeDifference {
2613    #[inline]
2614    fn from((largest, dt): (Unit, DateTime)) -> TimeDifference {
2615        TimeDifference::from((largest, Time::from(dt)))
2616    }
2617}
2618
2619impl From<(Unit, Zoned)> for TimeDifference {
2620    #[inline]
2621    fn from((largest, zdt): (Unit, Zoned)) -> TimeDifference {
2622        TimeDifference::from((largest, Time::from(zdt)))
2623    }
2624}
2625
2626impl<'a> From<(Unit, &'a Zoned)> for TimeDifference {
2627    #[inline]
2628    fn from((largest, zdt): (Unit, &'a Zoned)) -> TimeDifference {
2629        TimeDifference::from((largest, zdt.datetime()))
2630    }
2631}
2632
2633/// Options for [`Time::round`].
2634///
2635/// This type provides a way to configure the rounding of a civil time.
2636/// In particular, `Time::round` accepts anything that implements the
2637/// `Into<TimeRound>` trait. There are some trait implementations that
2638/// therefore make calling `Time::round` in some common cases more ergonomic:
2639///
2640/// * `From<Unit> for TimeRound` will construct a rounding configuration that
2641/// rounds to the unit given. Specifically, `TimeRound::new().smallest(unit)`.
2642/// * `From<(Unit, i64)> for TimeRound` is like the one above, but also
2643/// specifies the rounding increment for [`TimeRound::increment`].
2644///
2645/// Note that in the default configuration, no rounding occurs.
2646///
2647/// # Example
2648///
2649/// This example shows how to round a time to the nearest second:
2650///
2651/// ```
2652/// use jiff::{civil::{Time, time}, Unit};
2653///
2654/// let t: Time = "16:24:59.5".parse()?;
2655/// assert_eq!(
2656///     t.round(Unit::Second)?,
2657///     // The second rounds up and causes minutes to increase.
2658///     time(16, 25, 0, 0),
2659/// );
2660///
2661/// # Ok::<(), Box<dyn std::error::Error>>(())
2662/// ```
2663///
2664/// The above makes use of the fact that `Unit` implements
2665/// `Into<TimeRound>`. If you want to change the rounding mode to, say,
2666/// truncation, then you'll need to construct a `TimeRound` explicitly
2667/// since there are no convenience `Into` trait implementations for
2668/// [`RoundMode`].
2669///
2670/// ```
2671/// use jiff::{civil::{Time, TimeRound, time}, RoundMode, Unit};
2672///
2673/// let t: Time = "2024-06-20 16:24:59.5".parse()?;
2674/// assert_eq!(
2675///     t.round(
2676///         TimeRound::new().smallest(Unit::Second).mode(RoundMode::Trunc),
2677///     )?,
2678///     // The second just gets truncated as if it wasn't there.
2679///     time(16, 24, 59, 0),
2680/// );
2681///
2682/// # Ok::<(), Box<dyn std::error::Error>>(())
2683/// ```
2684#[derive(Clone, Copy, Debug)]
2685pub struct TimeRound {
2686    smallest: Unit,
2687    mode: RoundMode,
2688    increment: i64,
2689}
2690
2691impl TimeRound {
2692    /// Create a new default configuration for rounding a [`Time`].
2693    #[inline]
2694    pub fn new() -> TimeRound {
2695        TimeRound {
2696            smallest: Unit::Nanosecond,
2697            mode: RoundMode::HalfExpand,
2698            increment: 1,
2699        }
2700    }
2701
2702    /// Set the smallest units allowed in the time returned after rounding.
2703    ///
2704    /// Any units below the smallest configured unit will be used, along with
2705    /// the rounding increment and rounding mode, to determine the value of the
2706    /// smallest unit. For example, when rounding `03:25:30` to the
2707    /// nearest minute, the `30` second unit will result in rounding the minute
2708    /// unit of `25` up to `26` and zeroing out everything below minutes.
2709    ///
2710    /// This defaults to [`Unit::Nanosecond`].
2711    ///
2712    /// # Errors
2713    ///
2714    /// The smallest units must be no greater than [`Unit::Hour`].
2715    ///
2716    /// # Example
2717    ///
2718    /// ```
2719    /// use jiff::{civil::{TimeRound, time}, Unit};
2720    ///
2721    /// let t = time(3, 25, 30, 0);
2722    /// assert_eq!(
2723    ///     t.round(TimeRound::new().smallest(Unit::Minute))?,
2724    ///     time(3, 26, 0, 0),
2725    /// );
2726    /// // Or, utilize the `From<Unit> for TimeRound` impl:
2727    /// assert_eq!(t.round(Unit::Minute)?, time(3, 26, 0, 0));
2728    ///
2729    /// # Ok::<(), Box<dyn std::error::Error>>(())
2730    /// ```
2731    #[inline]
2732    pub fn smallest(self, unit: Unit) -> TimeRound {
2733        TimeRound { smallest: unit, ..self }
2734    }
2735
2736    /// Set the rounding mode.
2737    ///
2738    /// This defaults to [`RoundMode::HalfExpand`], which rounds away from
2739    /// zero. It matches the kind of rounding you might have been taught in
2740    /// school.
2741    ///
2742    /// # Example
2743    ///
2744    /// This shows how to always round times up towards positive infinity.
2745    ///
2746    /// ```
2747    /// use jiff::{civil::{Time, TimeRound, time}, RoundMode, Unit};
2748    ///
2749    /// let t: Time = "03:25:01".parse()?;
2750    /// assert_eq!(
2751    ///     t.round(
2752    ///         TimeRound::new()
2753    ///             .smallest(Unit::Minute)
2754    ///             .mode(RoundMode::Ceil),
2755    ///     )?,
2756    ///     time(3, 26, 0, 0),
2757    /// );
2758    ///
2759    /// # Ok::<(), Box<dyn std::error::Error>>(())
2760    /// ```
2761    #[inline]
2762    pub fn mode(self, mode: RoundMode) -> TimeRound {
2763        TimeRound { mode, ..self }
2764    }
2765
2766    /// Set the rounding increment for the smallest unit.
2767    ///
2768    /// The default value is `1`. Other values permit rounding the smallest
2769    /// unit to the nearest integer increment specified. For example, if the
2770    /// smallest unit is set to [`Unit::Minute`], then a rounding increment of
2771    /// `30` would result in rounding in increments of a half hour. That is,
2772    /// the only minute value that could result would be `0` or `30`.
2773    ///
2774    /// # Errors
2775    ///
2776    /// The rounding increment must divide evenly into the
2777    /// next highest unit above the smallest unit set. The rounding increment
2778    /// must also not be equal to the next highest unit. For example, if the
2779    /// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values
2780    /// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`.
2781    /// Namely, any integer that divides evenly into `1,000` nanoseconds since
2782    /// there are `1,000` nanoseconds in the next highest unit (microseconds).
2783    ///
2784    /// # Example
2785    ///
2786    /// This example shows how to round a time to the nearest 10 minute
2787    /// increment.
2788    ///
2789    /// ```
2790    /// use jiff::{civil::{Time, TimeRound, time}, RoundMode, Unit};
2791    ///
2792    /// let t: Time = "03:24:59".parse()?;
2793    /// assert_eq!(t.round((Unit::Minute, 10))?, time(3, 20, 0, 0));
2794    ///
2795    /// # Ok::<(), Box<dyn std::error::Error>>(())
2796    /// ```
2797    #[inline]
2798    pub fn increment(self, increment: i64) -> TimeRound {
2799        TimeRound { increment, ..self }
2800    }
2801
2802    /// Does the actual rounding.
2803    pub(crate) fn round(&self, t: Time) -> Result<Time, Error> {
2804        let increment = increment::for_time(self.smallest, self.increment)?;
2805        let nanos = t.to_nanosecond();
2806        let rounded = self.mode.round_by_unit_in_nanoseconds(
2807            nanos,
2808            self.smallest,
2809            increment,
2810        );
2811        let limit =
2812            t::NoUnits128::rfrom(t::CivilDayNanosecond::MAX_SELF) + C(1);
2813        Ok(Time::from_nanosecond((rounded % limit).rinto()))
2814    }
2815}
2816
2817impl Default for TimeRound {
2818    #[inline]
2819    fn default() -> TimeRound {
2820        TimeRound::new()
2821    }
2822}
2823
2824impl From<Unit> for TimeRound {
2825    #[inline]
2826    fn from(unit: Unit) -> TimeRound {
2827        TimeRound::default().smallest(unit)
2828    }
2829}
2830
2831impl From<(Unit, i64)> for TimeRound {
2832    #[inline]
2833    fn from((unit, increment): (Unit, i64)) -> TimeRound {
2834        TimeRound::from(unit).increment(increment)
2835    }
2836}
2837
2838/// A builder for setting the fields on a [`Time`].
2839///
2840/// This builder is constructed via [`Time::with`].
2841///
2842/// # Example
2843///
2844/// Unlike [`Date`], a [`Time`] is valid for all possible valid values of its
2845/// fields. That is, there is no way for two valid field values to combine
2846/// into an invalid `Time`. So, for `Time`, this builder does have as much of
2847/// a benefit versus an API design with methods like `Time::with_hour` and
2848/// `Time::with_minute`. Nevertheless, this builder permits settings multiple
2849/// fields at the same time and performing only one validity check. Moreover,
2850/// this provides a consistent API with other date and time types in this
2851/// crate.
2852///
2853/// ```
2854/// use jiff::civil::time;
2855///
2856/// let t1 = time(0, 0, 24, 0);
2857/// let t2 = t1.with().hour(15).minute(30).millisecond(10).build()?;
2858/// assert_eq!(t2, time(15, 30, 24, 10_000_000));
2859///
2860/// # Ok::<(), Box<dyn std::error::Error>>(())
2861/// ```
2862#[derive(Clone, Copy, Debug)]
2863pub struct TimeWith {
2864    original: Time,
2865    hour: Option<i8>,
2866    minute: Option<i8>,
2867    second: Option<i8>,
2868    millisecond: Option<i16>,
2869    microsecond: Option<i16>,
2870    nanosecond: Option<i16>,
2871    subsec_nanosecond: Option<i32>,
2872}
2873
2874impl TimeWith {
2875    #[inline]
2876    fn new(original: Time) -> TimeWith {
2877        TimeWith {
2878            original,
2879            hour: None,
2880            minute: None,
2881            second: None,
2882            millisecond: None,
2883            microsecond: None,
2884            nanosecond: None,
2885            subsec_nanosecond: None,
2886        }
2887    }
2888
2889    /// Create a new `Time` from the fields set on this configuration.
2890    ///
2891    /// An error occurs when the fields combine to an invalid time. This only
2892    /// occurs when at least one field has an invalid value, or if at least
2893    /// one of `millisecond`, `microsecond` or `nanosecond` is set _and_
2894    /// `subsec_nanosecond` is set. Otherwise, if all fields are valid, then
2895    /// the entire `Time` is guaranteed to be valid.
2896    ///
2897    /// For any fields not set on this configuration, the values are taken from
2898    /// the [`Time`] that originally created this configuration. When no values
2899    /// are set, this routine is guaranteed to succeed and will always return
2900    /// the original time without modification.
2901    ///
2902    /// # Example
2903    ///
2904    /// This creates a time but with its fractional nanosecond component
2905    /// stripped:
2906    ///
2907    /// ```
2908    /// use jiff::civil::time;
2909    ///
2910    /// let t = time(14, 27, 30, 123_456_789);
2911    /// assert_eq!(t.with().subsec_nanosecond(0).build()?, time(14, 27, 30, 0));
2912    ///
2913    /// # Ok::<(), Box<dyn std::error::Error>>(())
2914    /// ```
2915    ///
2916    /// # Example: error for invalid time
2917    ///
2918    /// ```
2919    /// use jiff::civil::time;
2920    ///
2921    /// let t = time(14, 27, 30, 0);
2922    /// assert!(t.with().hour(24).build().is_err());
2923    /// ```
2924    ///
2925    /// # Example: error for ambiguous sub-second value
2926    ///
2927    /// ```
2928    /// use jiff::civil::time;
2929    ///
2930    /// let t = time(14, 27, 30, 123_456_789);
2931    /// // Setting both the individual sub-second fields and the entire
2932    /// // fractional component could lead to a misleading configuration. So
2933    /// // if it's done, it results in an error in all cases. Callers must
2934    /// // choose one or the other.
2935    /// assert!(t.with().microsecond(1).subsec_nanosecond(0).build().is_err());
2936    /// ```
2937    #[inline]
2938    pub fn build(self) -> Result<Time, Error> {
2939        let hour = match self.hour {
2940            None => self.original.hour_ranged(),
2941            Some(hour) => Hour::try_new("hour", hour)?,
2942        };
2943        let minute = match self.minute {
2944            None => self.original.minute_ranged(),
2945            Some(minute) => Minute::try_new("minute", minute)?,
2946        };
2947        let second = match self.second {
2948            None => self.original.second_ranged(),
2949            Some(second) => Second::try_new("second", second)?,
2950        };
2951        let millisecond = match self.millisecond {
2952            None => self.original.millisecond_ranged(),
2953            Some(millisecond) => {
2954                Millisecond::try_new("millisecond", millisecond)?
2955            }
2956        };
2957        let microsecond = match self.microsecond {
2958            None => self.original.microsecond_ranged(),
2959            Some(microsecond) => {
2960                Microsecond::try_new("microsecond", microsecond)?
2961            }
2962        };
2963        let nanosecond = match self.nanosecond {
2964            None => self.original.nanosecond_ranged(),
2965            Some(nanosecond) => Nanosecond::try_new("nanosecond", nanosecond)?,
2966        };
2967        let subsec_nanosecond = match self.subsec_nanosecond {
2968            None => self.original.subsec_nanosecond_ranged(),
2969            Some(subsec_nanosecond) => {
2970                if self.millisecond.is_some() {
2971                    return Err(err!(
2972                        "cannot set both TimeWith::millisecond \
2973                         and TimeWith::subsec_nanosecond",
2974                    ));
2975                }
2976                if self.microsecond.is_some() {
2977                    return Err(err!(
2978                        "cannot set both TimeWith::microsecond \
2979                         and TimeWith::subsec_nanosecond",
2980                    ));
2981                }
2982                if self.nanosecond.is_some() {
2983                    return Err(err!(
2984                        "cannot set both TimeWith::nanosecond \
2985                         and TimeWith::subsec_nanosecond",
2986                    ));
2987                }
2988                SubsecNanosecond::try_new(
2989                    "subsec_nanosecond",
2990                    subsec_nanosecond,
2991                )?
2992            }
2993        };
2994        if self.subsec_nanosecond.is_some() {
2995            Ok(Time::new_ranged(hour, minute, second, subsec_nanosecond))
2996        } else {
2997            Ok(Time::new_ranged(hour, minute, second, C(0))
2998                .with_subsec_parts_ranged(
2999                    millisecond,
3000                    microsecond,
3001                    nanosecond,
3002                ))
3003        }
3004    }
3005
3006    /// Set the hour field on a [`Time`].
3007    ///
3008    /// One can access this value via [`Time::hour`].
3009    ///
3010    /// This overrides any previous hour settings.
3011    ///
3012    /// # Errors
3013    ///
3014    /// This returns an error when [`TimeWith::build`] is called if the given
3015    /// hour is outside the range `0..=23`.
3016    ///
3017    /// # Example
3018    ///
3019    /// ```
3020    /// use jiff::civil::time;
3021    ///
3022    /// let t1 = time(15, 21, 59, 0);
3023    /// assert_eq!(t1.hour(), 15);
3024    /// let t2 = t1.with().hour(3).build()?;
3025    /// assert_eq!(t2.hour(), 3);
3026    ///
3027    /// # Ok::<(), Box<dyn std::error::Error>>(())
3028    /// ```
3029    #[inline]
3030    pub fn hour(self, hour: i8) -> TimeWith {
3031        TimeWith { hour: Some(hour), ..self }
3032    }
3033
3034    /// Set the minute field on a [`Time`].
3035    ///
3036    /// One can access this value via [`Time::minute`].
3037    ///
3038    /// This overrides any previous minute settings.
3039    ///
3040    /// # Errors
3041    ///
3042    /// This returns an error when [`TimeWith::build`] is called if the given
3043    /// minute is outside the range `0..=59`.
3044    ///
3045    /// # Example
3046    ///
3047    /// ```
3048    /// use jiff::civil::time;
3049    ///
3050    /// let t1 = time(15, 21, 59, 0);
3051    /// assert_eq!(t1.minute(), 21);
3052    /// let t2 = t1.with().minute(3).build()?;
3053    /// assert_eq!(t2.minute(), 3);
3054    ///
3055    /// # Ok::<(), Box<dyn std::error::Error>>(())
3056    /// ```
3057    #[inline]
3058    pub fn minute(self, minute: i8) -> TimeWith {
3059        TimeWith { minute: Some(minute), ..self }
3060    }
3061
3062    /// Set the second field on a [`Time`].
3063    ///
3064    /// One can access this value via [`Time::second`].
3065    ///
3066    /// This overrides any previous second settings.
3067    ///
3068    /// # Errors
3069    ///
3070    /// This returns an error when [`TimeWith::build`] is called if the given
3071    /// second is outside the range `0..=59`.
3072    ///
3073    /// # Example
3074    ///
3075    /// ```
3076    /// use jiff::civil::time;
3077    ///
3078    /// let t1 = time(15, 21, 59, 0);
3079    /// assert_eq!(t1.second(), 59);
3080    /// let t2 = t1.with().second(3).build()?;
3081    /// assert_eq!(t2.second(), 3);
3082    ///
3083    /// # Ok::<(), Box<dyn std::error::Error>>(())
3084    /// ```
3085    #[inline]
3086    pub fn second(self, second: i8) -> TimeWith {
3087        TimeWith { second: Some(second), ..self }
3088    }
3089
3090    /// Set the millisecond field on a [`Time`].
3091    ///
3092    /// One can access this value via [`Time::millisecond`].
3093    ///
3094    /// This overrides any previous millisecond settings.
3095    ///
3096    /// # Errors
3097    ///
3098    /// This returns an error when [`TimeWith::build`] is called if the given
3099    /// millisecond is outside the range `0..=999`, or if both this and
3100    /// [`TimeWith::subsec_nanosecond`] are set.
3101    ///
3102    /// # Example
3103    ///
3104    /// This shows the relationship between [`Time::millisecond`] and
3105    /// [`Time::subsec_nanosecond`]:
3106    ///
3107    /// ```
3108    /// use jiff::civil::time;
3109    ///
3110    /// let t = time(15, 21, 35, 0).with().millisecond(123).build()?;
3111    /// assert_eq!(t.subsec_nanosecond(), 123_000_000);
3112    ///
3113    /// # Ok::<(), Box<dyn std::error::Error>>(())
3114    /// ```
3115    #[inline]
3116    pub fn millisecond(self, millisecond: i16) -> TimeWith {
3117        TimeWith { millisecond: Some(millisecond), ..self }
3118    }
3119
3120    /// Set the microsecond field on a [`Time`].
3121    ///
3122    /// One can access this value via [`Time::microsecond`].
3123    ///
3124    /// This overrides any previous microsecond settings.
3125    ///
3126    /// # Errors
3127    ///
3128    /// This returns an error when [`TimeWith::build`] is called if the given
3129    /// microsecond is outside the range `0..=999`, or if both this and
3130    /// [`TimeWith::subsec_nanosecond`] are set.
3131    ///
3132    /// # Example
3133    ///
3134    /// This shows the relationship between [`Time::microsecond`] and
3135    /// [`Time::subsec_nanosecond`]:
3136    ///
3137    /// ```
3138    /// use jiff::civil::time;
3139    ///
3140    /// let t = time(15, 21, 35, 0).with().microsecond(123).build()?;
3141    /// assert_eq!(t.subsec_nanosecond(), 123_000);
3142    ///
3143    /// # Ok::<(), Box<dyn std::error::Error>>(())
3144    /// ```
3145    #[inline]
3146    pub fn microsecond(self, microsecond: i16) -> TimeWith {
3147        TimeWith { microsecond: Some(microsecond), ..self }
3148    }
3149
3150    /// Set the nanosecond field on a [`Time`].
3151    ///
3152    /// One can access this value via [`Time::nanosecond`].
3153    ///
3154    /// This overrides any previous nanosecond settings.
3155    ///
3156    /// # Errors
3157    ///
3158    /// This returns an error when [`TimeWith::build`] is called if the given
3159    /// nanosecond is outside the range `0..=999`, or if both this and
3160    /// [`TimeWith::subsec_nanosecond`] are set.
3161    ///
3162    /// # Example
3163    ///
3164    /// This shows the relationship between [`Time::nanosecond`] and
3165    /// [`Time::subsec_nanosecond`]:
3166    ///
3167    /// ```
3168    /// use jiff::civil::time;
3169    ///
3170    /// let t = time(15, 21, 35, 0).with().nanosecond(123).build()?;
3171    /// assert_eq!(t.subsec_nanosecond(), 123);
3172    ///
3173    /// # Ok::<(), Box<dyn std::error::Error>>(())
3174    /// ```
3175    #[inline]
3176    pub fn nanosecond(self, nanosecond: i16) -> TimeWith {
3177        TimeWith { nanosecond: Some(nanosecond), ..self }
3178    }
3179
3180    /// Set the subsecond nanosecond field on a [`Time`].
3181    ///
3182    /// If you want to access this value on `Time`, then use
3183    /// [`Time::subsec_nanosecond`].
3184    ///
3185    /// This overrides any previous subsecond nanosecond settings.
3186    ///
3187    /// # Errors
3188    ///
3189    /// This returns an error when [`TimeWith::build`] is called if the given
3190    /// subsecond nanosecond is outside the range `0..=999,999,999`, or if both
3191    /// this and one of [`TimeWith::millisecond`], [`TimeWith::microsecond`] or
3192    /// [`TimeWith::nanosecond`] are set.
3193    ///
3194    /// # Example
3195    ///
3196    /// This shows the relationship between constructing a `Time` value with
3197    /// subsecond nanoseconds and its individual subsecond fields:
3198    ///
3199    /// ```
3200    /// use jiff::civil::time;
3201    ///
3202    /// let t1 = time(15, 21, 35, 0);
3203    /// let t2 = t1.with().subsec_nanosecond(123_456_789).build()?;
3204    /// assert_eq!(t2.millisecond(), 123);
3205    /// assert_eq!(t2.microsecond(), 456);
3206    /// assert_eq!(t2.nanosecond(), 789);
3207    ///
3208    /// # Ok::<(), Box<dyn std::error::Error>>(())
3209    /// ```
3210    #[inline]
3211    pub fn subsec_nanosecond(self, subsec_nanosecond: i32) -> TimeWith {
3212        TimeWith { subsec_nanosecond: Some(subsec_nanosecond), ..self }
3213    }
3214}
3215
3216#[cfg(test)]
3217mod tests {
3218    use std::io::Cursor;
3219
3220    use crate::{civil::time, span::span_eq, ToSpan};
3221
3222    use super::*;
3223
3224    #[test]
3225    fn min() {
3226        let t = Time::MIN;
3227        assert_eq!(t.hour(), 0);
3228        assert_eq!(t.minute(), 0);
3229        assert_eq!(t.second(), 0);
3230        assert_eq!(t.subsec_nanosecond(), 0);
3231    }
3232
3233    #[test]
3234    fn max() {
3235        let t = Time::MAX;
3236        assert_eq!(t.hour(), 23);
3237        assert_eq!(t.minute(), 59);
3238        assert_eq!(t.second(), 59);
3239        assert_eq!(t.subsec_nanosecond(), 999_999_999);
3240    }
3241
3242    #[test]
3243    fn invalid() {
3244        assert!(Time::new(24, 0, 0, 0).is_err());
3245        assert!(Time::new(23, 60, 0, 0).is_err());
3246        assert!(Time::new(23, 59, 60, 0).is_err());
3247        assert!(Time::new(23, 59, 61, 0).is_err());
3248        assert!(Time::new(-1, 0, 0, 0).is_err());
3249        assert!(Time::new(0, -1, 0, 0).is_err());
3250        assert!(Time::new(0, 0, -1, 0).is_err());
3251
3252        assert!(Time::new(0, 0, 0, 1_000_000_000).is_err());
3253        assert!(Time::new(0, 0, 0, -1).is_err());
3254        assert!(Time::new(23, 59, 59, 1_000_000_000).is_err());
3255        assert!(Time::new(23, 59, 59, -1).is_err());
3256    }
3257
3258    #[test]
3259    fn rounding_cross_midnight() {
3260        let t1 = time(23, 59, 59, 999_999_999);
3261
3262        let t2 = t1.round(Unit::Nanosecond).unwrap();
3263        assert_eq!(t2, t1);
3264
3265        let t2 = t1.round(Unit::Millisecond).unwrap();
3266        assert_eq!(t2, time(0, 0, 0, 0));
3267
3268        let t2 = t1.round(Unit::Microsecond).unwrap();
3269        assert_eq!(t2, time(0, 0, 0, 0));
3270
3271        let t2 = t1.round(Unit::Millisecond).unwrap();
3272        assert_eq!(t2, time(0, 0, 0, 0));
3273
3274        let t2 = t1.round(Unit::Second).unwrap();
3275        assert_eq!(t2, time(0, 0, 0, 0));
3276
3277        let t2 = t1.round(Unit::Minute).unwrap();
3278        assert_eq!(t2, time(0, 0, 0, 0));
3279
3280        let t2 = t1.round(Unit::Hour).unwrap();
3281        assert_eq!(t2, time(0, 0, 0, 0));
3282
3283        let t1 = time(22, 15, 0, 0);
3284        assert_eq!(
3285            time(22, 30, 0, 0),
3286            t1.round(TimeRound::new().smallest(Unit::Minute).increment(30))
3287                .unwrap()
3288        );
3289    }
3290
3291    quickcheck::quickcheck! {
3292        fn prop_ordering_same_as_civil_nanosecond(
3293            civil_nanosecond1: CivilDayNanosecond,
3294            civil_nanosecond2: CivilDayNanosecond
3295        ) -> bool {
3296            let t1 = Time::from_nanosecond(civil_nanosecond1);
3297            let t2 = Time::from_nanosecond(civil_nanosecond2);
3298            t1.cmp(&t2) == civil_nanosecond1.cmp(&civil_nanosecond2)
3299        }
3300
3301        fn prop_checked_add_then_sub(
3302            time: Time,
3303            nano_span: CivilDayNanosecond
3304        ) -> quickcheck::TestResult {
3305            let span = Span::new().nanoseconds(nano_span.get());
3306            let Ok(sum) = time.checked_add(span) else {
3307                return quickcheck::TestResult::discard()
3308            };
3309            let diff = sum.checked_sub(span).unwrap();
3310            quickcheck::TestResult::from_bool(time == diff)
3311        }
3312
3313        fn prop_wrapping_add_then_sub(
3314            time: Time,
3315            nano_span: CivilDayNanosecond
3316        ) -> bool {
3317            let span = Span::new().nanoseconds(nano_span.get());
3318            let sum = time.wrapping_add(span);
3319            let diff = sum.wrapping_sub(span);
3320            time == diff
3321        }
3322
3323        fn prop_checked_add_equals_wrapping_add(
3324            time: Time,
3325            nano_span: CivilDayNanosecond
3326        ) -> quickcheck::TestResult {
3327            let span = Span::new().nanoseconds(nano_span.get());
3328            let Ok(sum_checked) = time.checked_add(span) else {
3329                return quickcheck::TestResult::discard()
3330            };
3331            let sum_wrapped = time.wrapping_add(span);
3332            quickcheck::TestResult::from_bool(sum_checked == sum_wrapped)
3333        }
3334
3335        fn prop_checked_sub_equals_wrapping_sub(
3336            time: Time,
3337            nano_span: CivilDayNanosecond
3338        ) -> quickcheck::TestResult {
3339            let span = Span::new().nanoseconds(nano_span.get());
3340            let Ok(diff_checked) = time.checked_sub(span) else {
3341                return quickcheck::TestResult::discard()
3342            };
3343            let diff_wrapped = time.wrapping_sub(span);
3344            quickcheck::TestResult::from_bool(diff_checked == diff_wrapped)
3345        }
3346
3347        fn prop_until_then_add(t1: Time, t2: Time) -> bool {
3348            let span = t1.until(t2).unwrap();
3349            t1.checked_add(span).unwrap() == t2
3350        }
3351
3352        fn prop_until_then_sub(t1: Time, t2: Time) -> bool {
3353            let span = t1.until(t2).unwrap();
3354            t2.checked_sub(span).unwrap() == t1
3355        }
3356
3357        fn prop_since_then_add(t1: Time, t2: Time) -> bool {
3358            let span = t1.since(t2).unwrap();
3359            t2.checked_add(span).unwrap() == t1
3360        }
3361
3362        fn prop_since_then_sub(t1: Time, t2: Time) -> bool {
3363            let span = t1.since(t2).unwrap();
3364            t1.checked_sub(span).unwrap() == t2
3365        }
3366
3367        fn prop_until_is_since_negated(t1: Time, t2: Time) -> bool {
3368            t1.until(t2).unwrap().get_nanoseconds()
3369                == t1.since(t2).unwrap().negate().get_nanoseconds()
3370        }
3371    }
3372
3373    #[test]
3374    fn overflowing_add() {
3375        let t1 = time(23, 30, 0, 0);
3376        let (t2, span) = t1.overflowing_add(5.hours()).unwrap();
3377        assert_eq!(t2, time(4, 30, 0, 0));
3378        span_eq!(span, 1.days());
3379    }
3380
3381    #[test]
3382    fn overflowing_add_overflows() {
3383        let t1 = time(23, 30, 0, 0);
3384        let span = Span::new()
3385            .hours(t::SpanHours::MAX_REPR)
3386            .minutes(t::SpanMinutes::MAX_REPR)
3387            .seconds(t::SpanSeconds::MAX_REPR)
3388            .milliseconds(t::SpanMilliseconds::MAX_REPR)
3389            .microseconds(t::SpanMicroseconds::MAX_REPR)
3390            .nanoseconds(t::SpanNanoseconds::MAX_REPR);
3391        assert!(t1.overflowing_add(span).is_err());
3392    }
3393
3394    #[test]
3395    fn time_size() {
3396        #[cfg(debug_assertions)]
3397        {
3398            assert_eq!(24, core::mem::size_of::<Time>());
3399        }
3400        #[cfg(not(debug_assertions))]
3401        {
3402            assert_eq!(8, core::mem::size_of::<Time>());
3403        }
3404    }
3405
3406    // This test checks that a wrapping subtraction with the minimum signed
3407    // duration is as expected.
3408    #[test]
3409    fn wrapping_sub_signed_duration_min() {
3410        let max = -SignedDuration::MIN.as_nanos();
3411        let got = time(15, 30, 8, 999_999_999).to_nanosecond();
3412        let expected = max.rem_euclid(t::NANOS_PER_CIVIL_DAY.bound());
3413        assert_eq!(got, expected);
3414    }
3415
3416    // This test checks that a wrapping subtraction with the maximum signed
3417    // duration is as expected.
3418    #[test]
3419    fn wrapping_sub_signed_duration_max() {
3420        let max = -SignedDuration::MAX.as_nanos();
3421        let got = time(8, 29, 52, 1).to_nanosecond();
3422        let expected = max.rem_euclid(t::NANOS_PER_CIVIL_DAY.bound());
3423        assert_eq!(got, expected);
3424    }
3425
3426    // This test checks that a wrapping subtraction with the maximum unsigned
3427    // duration is as expected.
3428    #[test]
3429    fn wrapping_sub_unsigned_duration_max() {
3430        let max =
3431            -i128::try_from(std::time::Duration::MAX.as_nanos()).unwrap();
3432        let got = time(16, 59, 44, 1).to_nanosecond();
3433        let expected = max.rem_euclid(t::NANOS_PER_CIVIL_DAY.bound());
3434        assert_eq!(got, expected);
3435    }
3436
3437    /// # `serde` deserializer compatibility test
3438    ///
3439    /// Serde YAML used to be unable to deserialize `jiff` types,
3440    /// as deserializing from bytes is not supported by the deserializer.
3441    ///
3442    /// - <https://github.com/BurntSushi/jiff/issues/138>
3443    /// - <https://github.com/BurntSushi/jiff/discussions/148>
3444    #[test]
3445    fn civil_time_deserialize_yaml() {
3446        let expected = time(16, 35, 4, 987654321);
3447
3448        let deserialized: Time =
3449            serde_yaml::from_str("16:35:04.987654321").unwrap();
3450
3451        assert_eq!(deserialized, expected);
3452
3453        let deserialized: Time =
3454            serde_yaml::from_slice("16:35:04.987654321".as_bytes()).unwrap();
3455
3456        assert_eq!(deserialized, expected);
3457
3458        let cursor = Cursor::new(b"16:35:04.987654321");
3459        let deserialized: Time = serde_yaml::from_reader(cursor).unwrap();
3460
3461        assert_eq!(deserialized, expected);
3462    }
3463}