jiff/fmt/temporal/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
/*!
A hybrid format derived from [RFC 3339], [RFC 9557] and [ISO 8601].
This module provides an implementation of the [Temporal ISO 8601 grammar]. The
API is spread out over parsers and printers for datetimes and spans.
Note that for most use cases, you should be using the corresponding
[`Display`](std::fmt::Display) or [`FromStr`](std::str::FromStr) trait
implementations for printing and parsing respectively. This module provides
a "lower level" API for configuring the behavior of printing and parsing,
including the ability to parse from byte strings (i.e., `&[u8]`).
# Date and time format
The specific format supported depends on what kind of type you're trying to
parse into. Here are some examples to give a general idea:
* `02:21:58` parses into a [`civil::Time`].
* `2020-08-21` parses into a [`civil::Date`].
* `2020-08-21T02:21:58` and `2020-08-21 02:21:58` both parse into a
[`civil::DateTime`].
* `2020-08-21T02:21:58-04` parses into an [`Timestamp`].
* `2020-08-21T02:21:58-04[America/New_York]` parses into a [`Zoned`].
Smaller types can generally be parsed from strings representing a bigger type.
For example, a `civil::Date` can be parsed from `2020-08-21T02:21:58`.
As mentioned above, the datetime format supported by Jiff is a hybrid of the
"best" parts of [RFC 3339], [RFC 9557] and [ISO 8601]. Generally speaking, [RFC
3339] and [RFC 9557] are supported in their entirety, but not all of ISO 8601
is. For example, `2024-06-16T10.5` is a valid ISO 8601 datetime, but isn't
supported by Jiff. (Only fractional seconds are supported.)
Some additional details worth noting:
* Parsing `Zoned` values requires a datetime string with a time zone
annotation like `[America/New_York]` or `[-07:00]`. If you need to parse a
datetime without a time zone annotation (but with an offset), then you should
parse it as an [`Timestamp`]. From there, it can be converted to a `Zoned` via
[`Timestamp::to_zoned`].
* When parsing `Zoned` values, ambiguous datetimes are handled via the
[`DateTimeParser::disambiguation`] configuration. By default, a "compatible"
mode is used where the earlier time is selected in a backward transition, while
the later time is selected in a forward transition.
* When parsing `Zoned` values, conflicts between the offset and the time zone
in the datetime string are handled via the [`DateTimeParser::offset_conflict`]
configuration. By default, any inconsistency between the offset and the time
zone results in a parse error.
* When parsing civil types like `civil::DateTime`, it's always an error if the
datetime string has a `Z` (Zulu) offset. It's an error since interpreting such
strings as civil time is usually a bug.
* In all cases, the `T` designator separating the date and time may be an ASCII
space instead.
The complete datetime format supported is described by the
[Temporal ISO 8601 grammar].
# Span format
To a first approximation, the span format supported roughly corresponds to this
regular expression:
```text
P(\d+y)?(\d+m)?(\d+w)?(\d+d)?(T(\d+h)?(\d+m)?(\d+s)?)?
```
But there are some details not easily captured by a simple regular expression:
* At least one unit must be specified. To write a zero span, specify `0` for
any unit. For example, `P0d` and `PT0s` are equivalent.
* The format is case insensitive. The printer will by default capitalize all
designators, but the unit designators can be configured to use lowercase with
[`SpanPrinter::lowercase`]. For example, `P3y1m10dT5h` instead of
`P3Y1M10DT5H`. You might prefer lowercase since you may find it easier to read.
However, it is an extension to ISO 8601 and isn't as broadly supported.
* Hours, minutes or seconds may be fractional. And the only units that may be
fractional are the lowest units.
* A span like `P99999999999y` is invalid because it exceeds the allowable range
of time representable by a [`Span`].
This is, roughly speaking, a subset of what [ISO 8601] specifies. It isn't
strictly speaking a subset since Jiff (like Temporal) permits week units to be
mixed with other units.
Here are some examples:
```
use jiff::{Span, ToSpan};
let spans = [
("P40D", 40.days()),
("P1y1d", 1.year().days(1)),
("P3dT4h59m", 3.days().hours(4).minutes(59)),
("PT2H30M", 2.hours().minutes(30)),
("P1m", 1.month()),
("P1w", 1.week()),
("P1w4d", 1.week().days(4)),
("PT1m", 1.minute()),
("PT0.0021s", 2.milliseconds().microseconds(100)),
("PT0s", 0.seconds()),
("P0d", 0.seconds()),
(
"P1y1m1dT1h1m1.1s",
1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100),
),
];
for (string, span) in spans {
let parsed: Span = string.parse()?;
assert_eq!(
span.fieldwise(),
parsed.fieldwise(),
"result of parsing {string:?}",
);
}
# Ok::<(), Box<dyn std::error::Error>>(())
```
One can also parse ISO 8601 durations into a [`SignedDuration`], but units are
limited to hours or smaller:
```
use jiff::SignedDuration;
let durations = [
("PT2H30M", SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)),
("PT2.5h", SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)),
("PT1m", SignedDuration::from_mins(1)),
("PT1.5m", SignedDuration::from_secs(90)),
("PT0.0021s", SignedDuration::new(0, 2_100_000)),
("PT0s", SignedDuration::ZERO),
("PT0.000000001s", SignedDuration::from_nanos(1)),
];
for (string, duration) in durations {
let parsed: SignedDuration = string.parse()?;
assert_eq!(duration, parsed, "result of parsing {string:?}");
}
# Ok::<(), Box<dyn std::error::Error>>(())
```
The complete span format supported is described by the [Temporal ISO 8601
grammar].
# Differences with Temporal
Jiff implements Temporal's grammar pretty closely, but there are a few
differences at the time of writing. It is a specific goal that all differences
should be rooted in what Jiff itself supports, and not in the grammar itself.
* The maximum UTC offset value expressible is `25:59:59` in Jiff, where as in
Temporal it's `23:59:59.999999999`. Jiff supports a slightly bigger maximum
to account for all valid values of POSIX time zone strings. Jiff also lacks
nanosecond precision for UTC offsets, as it's not clear how useful that is in
practice.
* Jiff doesn't support a datetime range as big as Temporal. For example,
in Temporal, `+202024-06-14T17:30[America/New_York]` is valid. But in Jiff,
since the maximum supported year is `9999`, parsing will fail. Jiff's datetime
range may be expanded in the future, but it is a non-goal to match Temporal's
range precisely.
* Jiff doesn't support RFC 9557 calendar annotations because Jiff only supports
the Gregorian calendar.
There is some more [background on Temporal's format] available.
[Temporal ISO 8601 grammar]: https://tc39.es/proposal-temporal/#sec-temporal-iso8601grammar
[RFC 3339]: https://www.rfc-editor.org/rfc/rfc3339
[RFC 9557]: https://www.rfc-editor.org/rfc/rfc9557.html
[ISO 8601]: https://www.iso.org/iso-8601-date-and-time-format.html
[background on Temporal's format]: https://github.com/tc39/proposal-temporal/issues/2843
*/
use crate::{
civil,
error::Error,
fmt::Write,
span::Span,
tz::{Disambiguation, Offset, OffsetConflict, TimeZone, TimeZoneDatabase},
SignedDuration, Timestamp, Zoned,
};
pub use self::pieces::{
Pieces, PiecesNumericOffset, PiecesOffset, TimeZoneAnnotation,
TimeZoneAnnotationKind, TimeZoneAnnotationName,
};
mod parser;
mod pieces;
mod printer;
/// The default date time parser that we use throughout Jiff.
pub(crate) static DEFAULT_DATETIME_PARSER: DateTimeParser =
DateTimeParser::new();
/// The default date time printer that we use throughout Jiff.
pub(crate) static DEFAULT_DATETIME_PRINTER: DateTimePrinter =
DateTimePrinter::new();
/// The default date time parser that we use throughout Jiff.
pub(crate) static DEFAULT_SPAN_PARSER: SpanParser = SpanParser::new();
/// The default date time printer that we use throughout Jiff.
pub(crate) static DEFAULT_SPAN_PRINTER: SpanPrinter = SpanPrinter::new();
/// A parser for Temporal datetimes.
///
/// This parser converts a machine (but also human) readable format of a
/// datetime to the various types found in Jiff: [`Zoned`], [`Timestamp`],
/// [`civil::DateTime`], [`civil::Date`] or [`civil::Time`]. Note that all
/// of those types provide [`FromStr`](core::str::FromStr) implementations
/// that utilize the default configuration of this parser. However, this parser
/// can be configured to behave differently and can also parse directly from
/// a `&[u8]`.
///
/// See the [`fmt::temporal`](crate::fmt::temporal) module documentation for
/// more information on the specific format used.
///
/// # Example
///
/// This example shows how to parse a `Zoned` datetime from a byte string.
/// (That is, `&[u8]` and not a `&str`.)
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz};
///
/// // A parser can be created in a const context.
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// let zdt = PARSER.parse_zoned(b"2024-06-15T07-04[America/New_York]")?;
/// assert_eq!(zdt.datetime(), date(2024, 6, 15).at(7, 0, 0, 0));
/// assert_eq!(zdt.time_zone(), &tz::db().get("America/New_York")?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Note that an ASCII space instead of the `T` separator is automatically
/// supported too:
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz};
///
/// // A parser can be created in a const context.
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// let zdt = PARSER.parse_zoned(b"2024-06-15 07-04[America/New_York]")?;
/// assert_eq!(zdt.datetime(), date(2024, 6, 15).at(7, 0, 0, 0));
/// assert_eq!(zdt.time_zone(), &tz::db().get("America/New_York")?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Debug)]
pub struct DateTimeParser {
p: parser::DateTimeParser,
offset_conflict: OffsetConflict,
disambiguation: Disambiguation,
}
impl DateTimeParser {
/// Create a new Temporal datetime parser with the default configuration.
#[inline]
pub const fn new() -> DateTimeParser {
DateTimeParser {
p: parser::DateTimeParser::new(),
offset_conflict: OffsetConflict::Reject,
disambiguation: Disambiguation::Compatible,
}
}
/// Set the conflict resolution strategy for when an offset in a datetime
/// string is inconsistent with the time zone.
///
/// See the documentation on [`OffsetConflict`] for more details about the
/// different strategies one can choose.
///
/// This only applies when parsing [`Zoned`] values.
///
/// The default is [`OffsetConflict::Reject`], which results in an error
/// whenever parsing a datetime with an offset that is inconsistent with
/// the time zone.
///
/// # Example: respecting offsets even when they're invalid
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz};
///
/// static PARSER: DateTimeParser = DateTimeParser::new()
/// .offset_conflict(tz::OffsetConflict::AlwaysOffset);
///
/// let zdt = PARSER.parse_zoned("2024-06-09T07:00-05[America/New_York]")?;
/// // Notice that the time *and* offset have been corrected. The offset
/// // given was invalid for `America/New_York` at the given time, so
/// // it cannot be kept, but the instant returned is equivalent to
/// // `2024-06-09T07:00-05`. It is just adjusted automatically to be
/// // correct in the `America/New_York` time zone.
/// assert_eq!(zdt.datetime(), date(2024, 6, 9).at(8, 0, 0, 0));
/// assert_eq!(zdt.offset(), tz::offset(-4));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: all offsets are invalid for gaps in civil time by default
///
/// When parsing a datetime with an offset for a gap in civil time, the
/// offset is treated as invalid. This results in parsing failing. For
/// example, some parts of Indiana in the US didn't start using daylight
/// saving time until 2006. If a datetime for 2006 were serialized before
/// the updated daylight saving time rules were known, then this parse
/// error will prevent you from silently changing the originally intended
/// time:
///
/// ```
/// use jiff::{fmt::temporal::DateTimeParser};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// // DST in Indiana/Vevay began at 2006-04-02T02:00 local time.
/// // The last time Indiana/Vevay observed DST was in 1972.
/// let result = PARSER.parse_zoned(
/// "2006-04-02T02:30-05[America/Indiana/Vevay]",
/// );
/// assert_eq!(
/// result.unwrap_err().to_string(),
/// "parsing \"2006-04-02T02:30-05[America/Indiana/Vevay]\" failed: \
/// datetime 2006-04-02T02:30:00 could not resolve to timestamp \
/// since 'reject' conflict resolution was chosen, and because \
/// datetime has offset -05, but the time zone America/Indiana/Vevay \
/// for the given datetime falls in a gap \
/// (between offsets -05 and -04), \
/// and all offsets for a gap are regarded as invalid",
/// );
/// ```
///
/// If one doesn't want an error here, then you can either prioritize the
/// instant in time by respecting the offset:
///
/// ```
/// use jiff::{fmt::temporal::DateTimeParser, tz};
///
/// static PARSER: DateTimeParser = DateTimeParser::new()
/// .offset_conflict(tz::OffsetConflict::AlwaysOffset);
///
/// let zdt = PARSER.parse_zoned(
/// "2006-04-02T02:30-05[America/Indiana/Vevay]",
/// )?;
/// assert_eq!(
/// zdt.to_string(),
/// "2006-04-02T03:30:00-04:00[America/Indiana/Vevay]",
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// or you can force your own disambiguation rules, e.g., by taking the
/// earlier time:
///
/// ```
/// use jiff::{fmt::temporal::DateTimeParser, tz};
///
/// static PARSER: DateTimeParser = DateTimeParser::new()
/// .disambiguation(tz::Disambiguation::Earlier)
/// .offset_conflict(tz::OffsetConflict::AlwaysTimeZone);
///
/// let zdt = PARSER.parse_zoned(
/// "2006-04-02T02:30-05[America/Indiana/Vevay]",
/// )?;
/// assert_eq!(
/// zdt.to_string(),
/// "2006-04-02T01:30:00-05:00[America/Indiana/Vevay]",
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: a `Z` never results in an offset conflict
///
/// [RFC 9557] specifies that `Z` indicates that the offset from UTC to
/// get local time is unknown. Since it doesn't prescribe a particular
/// offset, when a `Z` is parsed with a time zone annotation, the
/// `OffsetConflict::ALwaysOffset` strategy is used regardless of what
/// is set here. For example:
///
/// ```
/// use jiff::fmt::temporal::DateTimeParser;
///
/// // NOTE: The default is reject.
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// let zdt = PARSER.parse_zoned(
/// "2025-06-20T17:30Z[America/New_York]",
/// )?;
/// assert_eq!(
/// zdt.to_string(),
/// "2025-06-20T13:30:00-04:00[America/New_York]",
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Conversely, if the `+00:00` offset was used, then an error would
/// occur because of the offset conflict:
///
/// ```
/// use jiff::fmt::temporal::DateTimeParser;
///
/// // NOTE: The default is reject.
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// let result = PARSER.parse_zoned(
/// "2025-06-20T17:30+00[America/New_York]",
/// );
/// assert_eq!(
/// result.unwrap_err().to_string(),
/// "parsing \"2025-06-20T17:30+00[America/New_York]\" failed: \
/// datetime 2025-06-20T17:30:00 could not resolve to a timestamp \
/// since 'reject' conflict resolution was chosen, and because \
/// datetime has offset +00, but the time zone America/New_York \
/// for the given datetime unambiguously has offset -04",
/// );
/// ```
///
/// [RFC 9557]: https://datatracker.ietf.org/doc/rfc9557/
#[inline]
pub const fn offset_conflict(
self,
strategy: OffsetConflict,
) -> DateTimeParser {
DateTimeParser { offset_conflict: strategy, ..self }
}
/// Set the disambiguation strategy for when a datetime falls into a time
/// zone transition "fold" or "gap."
///
/// The most common manifestation of such time zone transitions is daylight
/// saving time. In most cases, the transition into daylight saving time
/// moves the civil time ("the time you see on the clock") ahead one hour.
/// This is called a "gap" because an hour on the clock is skipped. While
/// the transition out of daylight saving time moves the civil time back
/// one hour. This is called a "fold" because an hour on the clock is
/// repeated.
///
/// In the case of a gap, an ambiguous datetime manifests as a time that
/// never appears on a clock. (For example, `02:30` on `2024-03-10` in New
/// York.) In the case of a fold, an ambiguous datetime manifests as a
/// time that repeats itself. (For example, `01:30` on `2024-11-03` in New
/// York.) So when a fold occurs, you don't know whether it's the "first"
/// occurrence of that time or the "second."
///
/// Time zone transitions are not just limited to daylight saving time,
/// although those are the most common. In other cases, a transition occurs
/// because of a change in the offset of the time zone itself. (See the
/// examples below.)
///
/// # Example
///
/// This example shows how to set the disambiguation configuration while
/// parsing a [`Zoned`] datetime. In this example, we always prefer the
/// earlier time.
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz};
///
/// static PARSER: DateTimeParser = DateTimeParser::new()
/// .disambiguation(tz::Disambiguation::Earlier);
///
/// let zdt = PARSER.parse_zoned("2024-03-10T02:05[America/New_York]")?;
/// assert_eq!(zdt.datetime(), date(2024, 3, 10).at(1, 5, 0, 0));
/// assert_eq!(zdt.offset(), tz::offset(-5));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: time zone offset change
///
/// In this example, we explore a time zone offset change in Hawaii that
/// occurred on `1947-06-08`. Namely, Hawaii went from a `-10:30` offset
/// to a `-10:00` offset at `02:00`. This results in a 30 minute gap in
/// civil time.
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz, ToSpan};
///
/// static PARSER: DateTimeParser = DateTimeParser::new()
/// .disambiguation(tz::Disambiguation::Later);
///
/// // 02:05 didn't exist on clocks on 1947-06-08.
/// let zdt = PARSER.parse_zoned(
/// "1947-06-08T02:05[Pacific/Honolulu]",
/// )?;
/// // Our parser is configured to select the later time, so we jump to
/// // 02:35. But if we used `Disambiguation::Earlier`, then we'd get
/// // 01:35.
/// assert_eq!(zdt.datetime(), date(1947, 6, 8).at(2, 35, 0, 0));
/// assert_eq!(zdt.offset(), tz::offset(-10));
///
/// // If we subtract 10 minutes from 02:35, notice that we (correctly)
/// // jump to 01:55 *and* our offset is corrected to -10:30.
/// let zdt = zdt.checked_sub(10.minutes())?;
/// assert_eq!(zdt.datetime(), date(1947, 6, 8).at(1, 55, 0, 0));
/// assert_eq!(zdt.offset(), tz::offset(-10).saturating_sub(30.minutes()));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub const fn disambiguation(
self,
strategy: Disambiguation,
) -> DateTimeParser {
DateTimeParser { disambiguation: strategy, ..self }
}
/// Parse a datetime string with a time zone annotation into a [`Zoned`]
/// value using the system time zone database.
///
/// # Errors
///
/// This returns an error if the datetime string given is invalid or if it
/// is valid but doesn't fit in the datetime range supported by Jiff.
///
/// The [`DateTimeParser::offset_conflict`] and
/// [`DateTimeParser::disambiguation`] settings can also influence
/// whether an error occurs or not. Namely, if [`OffsetConflict::Reject`]
/// is used (which is the default), then an error occurs when there
/// is an inconsistency between the offset and the time zone. And if
/// [`Disambiguation::Reject`] is used, then an error occurs when the civil
/// time in the string is ambiguous.
///
/// # Example: parsing without an IANA time zone
///
/// Note that when parsing a `Zoned` value, it is required for the datetime
/// string to contain a time zone annotation in brackets. For example,
/// this fails to parse even though it refers to a precise instant in time:
///
/// ```
/// use jiff::fmt::temporal::DateTimeParser;
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// assert!(PARSER.parse_zoned("2024-06-08T07:00-04").is_err());
/// ```
///
/// While it is better to include a time zone name, if the only thing
/// that's available is an offset, the offset can be repeated as a time
/// zone annotation:
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// let zdt = PARSER.parse_zoned("2024-06-08T07:00-04[-04]")?;
/// assert_eq!(zdt.datetime(), date(2024, 6, 8).at(7, 0, 0, 0));
/// assert_eq!(zdt.offset(), tz::offset(-4));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Otherwise, if you need to be able to parse something like
/// `2024-06-08T07:00-04` as-is, you should parse it into an [`Timestamp`]:
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// let timestamp = PARSER.parse_timestamp("2024-06-08T07:00-04")?;
/// let zdt = timestamp.to_zoned(tz::TimeZone::UTC);
/// assert_eq!(zdt.datetime(), date(2024, 6, 8).at(11, 0, 0, 0));
/// assert_eq!(zdt.offset(), tz::offset(0));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// If you _really_ need to parse something like `2024-06-08T07:00-04`
/// into a `Zoned` with a fixed offset of `-04:00` as its `TimeZone`,
/// then you'll need to use lower level parsing routines. See the
/// documentation on [`Pieces`] for a case study of how to achieve this.
pub fn parse_zoned<I: AsRef<[u8]>>(
&self,
input: I,
) -> Result<Zoned, Error> {
self.parse_zoned_with(crate::tz::db(), input)
}
/// Parse a datetime string with a time zone annotation into a [`Zoned`]
/// value using the time zone database given.
///
/// # Errors
///
/// This returns an error if the datetime string given is invalid or if it
/// is valid but doesn't fit in the datetime range supported by Jiff.
///
/// The [`DateTimeParser::offset_conflict`] and
/// [`DateTimeParser::disambiguation`] settings can also influence
/// whether an error occurs or not. Namely, if [`OffsetConflict::Reject`]
/// is used (which is the default), then an error occurs when there
/// is an inconsistency between the offset and the time zone. And if
/// [`Disambiguation::Reject`] is used, then an error occurs when the civil
/// time in the string is ambiguous.
///
/// # Example
///
/// This example demonstrates the utility of this routine by parsing a
/// datetime using an older copy of the IANA Time Zone Database. This
/// example leverages the fact that the 2018 copy of `tzdb` preceded
/// Brazil's announcement that daylight saving time would be abolished.
/// This meant that datetimes in the future, when parsed with the older
/// copy of `tzdb`, would still follow the old daylight saving time rules.
/// But a mere update of `tzdb` would otherwise change the meaning of the
/// datetime.
///
/// This scenario can come up if one stores datetimes in the future.
/// This is also why the default offset conflict resolution strategy
/// is [`OffsetConflict::Reject`], which prevents one from silently
/// re-interpreting datetimes to a different timestamp.
///
/// ```no_run
/// use jiff::{fmt::temporal::DateTimeParser, tz::{self, TimeZoneDatabase}};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// // Open a version of tzdb from before Brazil announced its abolition
/// // of daylight saving time.
/// let tzdb2018 = TimeZoneDatabase::from_dir("path/to/tzdb-2018b")?;
/// // Open the system tzdb.
/// let tzdb = tz::db();
///
/// // Parse the same datetime string with the same parser, but using two
/// // different versions of tzdb.
/// let dt = "2020-01-15T12:00[America/Sao_Paulo]";
/// let zdt2018 = PARSER.parse_zoned_with(&tzdb2018, dt)?;
/// let zdt = PARSER.parse_zoned_with(tzdb, dt)?;
///
/// // Before DST was abolished, 2020-01-15 was in DST, which corresponded
/// // to UTC offset -02. Since DST rules applied to datetimes in the
/// // future, the 2018 version of tzdb would lead one to interpret
/// // 2020-01-15 as being in DST.
/// assert_eq!(zdt2018.offset(), tz::offset(-2));
/// // But DST was abolished in 2019, which means that 2020-01-15 was no
/// // no longer in DST. So after a tzdb update, the same datetime as above
/// // now has a different offset.
/// assert_eq!(zdt.offset(), tz::offset(-3));
///
/// // So if you try to parse a datetime serialized from an older copy of
/// // tzdb, you'll get an error under the default configuration because
/// // of `OffsetConflict::Reject`. This would succeed if you parsed it
/// // using tzdb2018!
/// assert!(PARSER.parse_zoned_with(tzdb, zdt2018.to_string()).is_err());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn parse_zoned_with<I: AsRef<[u8]>>(
&self,
db: &TimeZoneDatabase,
input: I,
) -> Result<Zoned, Error> {
let input = input.as_ref();
let parsed = self.p.parse_temporal_datetime(input)?;
let dt = parsed.into_full()?;
let zoned =
dt.to_zoned(db, self.offset_conflict, self.disambiguation)?;
Ok(zoned)
}
/// Parse a datetime string into a [`Timestamp`].
///
/// The datetime string must correspond to a specific instant in time. This
/// requires an offset in the datetime string.
///
/// # Errors
///
/// This returns an error if the datetime string given is invalid or if it
/// is valid but doesn't fit in the datetime range supported by Jiff.
///
/// # Example
///
/// This shows a basic example of parsing an `Timestamp`.
///
/// ```
/// use jiff::fmt::temporal::DateTimeParser;
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// let timestamp = PARSER.parse_timestamp("2024-03-10T02:05-04")?;
/// assert_eq!(timestamp.to_string(), "2024-03-10T06:05:00Z");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: parsing a timestamp from a datetime with a time zone
///
/// A timestamp can also be parsed fron a time zone aware datetime string.
/// The time zone is ignored and the offset is always used.
///
/// ```
/// use jiff::fmt::temporal::DateTimeParser;
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// let timestamp = PARSER.parse_timestamp(
/// "2024-03-10T02:05-04[America/New_York]",
/// )?;
/// assert_eq!(timestamp.to_string(), "2024-03-10T06:05:00Z");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn parse_timestamp<I: AsRef<[u8]>>(
&self,
input: I,
) -> Result<Timestamp, Error> {
let input = input.as_ref();
let parsed = self.p.parse_temporal_datetime(input)?;
let dt = parsed.into_full()?;
let timestamp = dt.to_timestamp()?;
Ok(timestamp)
}
/// Parse a civil datetime string into a [`civil::DateTime`].
///
/// A civil datetime can be parsed from anything that contains a datetime.
/// For example, a time zone aware string.
///
/// # Errors
///
/// This returns an error if the datetime string given is invalid or if it
/// is valid but doesn't fit in the datetime range supported by Jiff.
///
/// This also returns an error if a `Z` (Zulu) offset is found, since
/// interpreting such strings as civil time is usually a bug.
///
/// # Example
///
/// This shows a basic example of parsing a `civil::DateTime`.
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimeParser};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// let datetime = PARSER.parse_datetime("2024-03-10T02:05")?;
/// assert_eq!(datetime, date(2024, 3, 10).at(2, 5, 0, 0));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: parsing fails if a `Z` (Zulu) offset is encountered
///
/// Because parsing a datetime with a `Z` offset and interpreting it as
/// a civil time is usually a bug, it is forbidden:
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimeParser};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// assert!(PARSER.parse_datetime("2024-03-10T02:05Z").is_err());
///
/// // Note though that -00 and +00 offsets parse successfully.
/// let datetime = PARSER.parse_datetime("2024-03-10T02:05+00")?;
/// assert_eq!(datetime, date(2024, 3, 10).at(2, 5, 0, 0));
/// let datetime = PARSER.parse_datetime("2024-03-10T02:05-00")?;
/// assert_eq!(datetime, date(2024, 3, 10).at(2, 5, 0, 0));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn parse_datetime<I: AsRef<[u8]>>(
&self,
input: I,
) -> Result<civil::DateTime, Error> {
let input = input.as_ref();
let parsed = self.p.parse_temporal_datetime(input)?;
let dt = parsed.into_full()?;
let datetime = dt.to_datetime()?;
Ok(datetime)
}
/// Parse a civil date string into a [`civil::Date`].
///
/// A civil date can be parsed from anything that contains a date. For
/// example, a time zone aware string.
///
/// # Errors
///
/// This returns an error if the date string given is invalid or if it
/// is valid but doesn't fit in the date range supported by Jiff.
///
/// This also returns an error if a `Z` (Zulu) offset is found, since
/// interpreting such strings as civil date or time is usually a bug.
///
/// # Example
///
/// This shows a basic example of parsing a `civil::Date`.
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimeParser};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// let d = PARSER.parse_date("2024-03-10")?;
/// assert_eq!(d, date(2024, 3, 10));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: parsing fails if a `Z` (Zulu) offset is encountered
///
/// Because parsing a date with a `Z` offset and interpreting it as
/// a civil date or time is usually a bug, it is forbidden:
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimeParser};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// assert!(PARSER.parse_date("2024-03-10T00:00:00Z").is_err());
///
/// // Note though that -00 and +00 offsets parse successfully.
/// let d = PARSER.parse_date("2024-03-10T00:00:00+00")?;
/// assert_eq!(d, date(2024, 3, 10));
/// let d = PARSER.parse_date("2024-03-10T00:00:00-00")?;
/// assert_eq!(d, date(2024, 3, 10));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn parse_date<I: AsRef<[u8]>>(
&self,
input: I,
) -> Result<civil::Date, Error> {
let input = input.as_ref();
let parsed = self.p.parse_temporal_datetime(input)?;
let dt = parsed.into_full()?;
let date = dt.to_date()?;
Ok(date)
}
/// Parse a civil time string into a [`civil::Time`].
///
/// A civil time can be parsed from anything that contains a time.
/// For example, a time zone aware string.
///
/// # Errors
///
/// This returns an error if the time string given is invalid or if it
/// is valid but doesn't fit in the time range supported by Jiff.
///
/// This also returns an error if a `Z` (Zulu) offset is found, since
/// interpreting such strings as civil time is usually a bug.
///
/// # Example
///
/// This shows a basic example of parsing a `civil::Time`.
///
/// ```
/// use jiff::{civil::time, fmt::temporal::DateTimeParser};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// let t = PARSER.parse_time("02:05")?;
/// assert_eq!(t, time(2, 5, 0, 0));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: parsing fails if a `Z` (Zulu) offset is encountered
///
/// Because parsing a time with a `Z` offset and interpreting it as
/// a civil time is usually a bug, it is forbidden:
///
/// ```
/// use jiff::{civil::time, fmt::temporal::DateTimeParser};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// assert!(PARSER.parse_time("02:05Z").is_err());
///
/// // Note though that -00 and +00 offsets parse successfully.
/// let t = PARSER.parse_time("02:05+00")?;
/// assert_eq!(t, time(2, 5, 0, 0));
/// let t = PARSER.parse_time("02:05-00")?;
/// assert_eq!(t, time(2, 5, 0, 0));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn parse_time<I: AsRef<[u8]>>(
&self,
input: I,
) -> Result<civil::Time, Error> {
let input = input.as_ref();
let parsed = self.p.parse_temporal_time(input)?;
let parsed_time = parsed.into_full()?;
let time = parsed_time.to_time();
Ok(time)
}
/// Parses a string representing a time zone into a [`TimeZone`].
///
/// This will parse one of three different categories of strings:
///
/// 1. An IANA Time Zone Database identifier. For example,
/// `America/New_York` or `UTC`.
/// 2. A fixed offset. For example, `-05:00` or `-00:44:30`.
/// 3. A POSIX time zone string. For example, `EST5EDT,M3.2.0,M11.1.0`.
///
/// # Example
///
/// This shows a few examples of parsing different kinds of time zones:
///
/// ```
/// use jiff::{fmt::temporal::DateTimeParser, tz::{self, TimeZone}};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// assert_eq!(
/// PARSER.parse_time_zone("-05:00")?,
/// TimeZone::fixed(tz::offset(-5)),
/// );
/// assert_eq!(
/// PARSER.parse_time_zone("+05:00:01")?,
/// TimeZone::fixed(tz::Offset::from_seconds(5 * 60 * 60 + 1).unwrap()),
/// );
/// assert_eq!(
/// PARSER.parse_time_zone("America/New_York")?,
/// TimeZone::get("America/New_York")?,
/// );
/// assert_eq!(
/// PARSER.parse_time_zone("Israel")?,
/// TimeZone::get("Israel")?,
/// );
/// assert_eq!(
/// PARSER.parse_time_zone("EST5EDT,M3.2.0,M11.1.0")?,
/// TimeZone::posix("EST5EDT,M3.2.0,M11.1.0")?,
/// );
///
/// // Some error cases!
/// assert!(PARSER.parse_time_zone("Z").is_err());
/// assert!(PARSER.parse_time_zone("05:00").is_err());
/// assert!(PARSER.parse_time_zone("+05:00:01.5").is_err());
/// assert!(PARSER.parse_time_zone("Does/Not/Exist").is_err());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn parse_time_zone<'i, I: AsRef<[u8]>>(
&self,
input: I,
) -> Result<TimeZone, Error> {
self.parse_time_zone_with(crate::tz::db(), input)
}
/// Parses a string representing a time zone into a [`TimeZone`] and
/// performs any time zone database lookups using the [`TimeZoneDatabase`]
/// given.
///
/// This is like [`DateTimeParser::parse_time_zone`], but uses the time
/// zone database given instead of the implicit global time zone database.
///
/// This will parse one of three different categories of strings:
///
/// 1. An IANA Time Zone Database identifier. For example,
/// `America/New_York` or `UTC`.
/// 2. A fixed offset. For example, `-05:00` or `-00:44:30`.
/// 3. A POSIX time zone string. For example, `EST5EDT,M3.2.0,M11.1.0`.
///
/// # Example
///
/// ```
/// use jiff::{fmt::temporal::DateTimeParser, tz::{self, TimeZone}};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// let db = jiff::tz::db();
/// assert_eq!(
/// PARSER.parse_time_zone_with(db, "America/New_York")?,
/// TimeZone::get("America/New_York")?,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// See also the example for [`DateTimeParser::parse_zoned_with`] for a
/// more interesting example using a time zone database other than the
/// default.
pub fn parse_time_zone_with<'i, I: AsRef<[u8]>>(
&self,
db: &TimeZoneDatabase,
input: I,
) -> Result<TimeZone, Error> {
let input = input.as_ref();
let parsed = self.p.parse_time_zone(input)?.into_full()?;
parsed.into_time_zone(db)
}
/// Parse a Temporal datetime string into [`Pieces`].
///
/// This is a lower level routine meant to give callers raw access to the
/// individual "pieces" of a parsed Temporal ISO 8601 datetime string.
/// Note that this only includes strings that have a date component.
///
/// The benefit of this routine is that it only checks that the datetime
/// is itself valid. It doesn't do any automatic diambiguation, offset
/// conflict resolution or attempt to prevent you from shooting yourself
/// in the foot. For example, this routine will let you parse a fixed
/// offset datetime into a `Zoned` without a time zone abbreviation.
///
/// Note that when using this routine, the
/// [`DateTimeParser::offset_conflict`] and
/// [`DateTimeParser::disambiguation`] configuration knobs are completely
/// ignored. This is because with the lower level `Pieces`, callers must
/// handle offset conflict resolution (if they want it) themselves. See
/// the [`Pieces`] documentation for a case study on how to do this if
/// you need it.
///
/// # Errors
///
/// This returns an error if the datetime string given is invalid or if it
/// is valid but doesn't fit in the date range supported by Jiff.
///
/// # Example
///
/// This shows how to parse a fixed offset timestamp into a `Zoned`.
///
/// ```
/// use jiff::{fmt::temporal::DateTimeParser, tz::TimeZone};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// let timestamp = "2025-01-02T15:13-05";
///
/// // Normally this operation will fail.
/// assert_eq!(
/// PARSER.parse_zoned(timestamp).unwrap_err().to_string(),
/// "failed to find time zone in square brackets in \
/// \"2025-01-02T15:13-05\", which is required for \
/// parsing a zoned instant",
/// );
///
/// // But you can work-around this with `Pieces`, which gives you direct
/// // access to the components parsed from the string.
/// let pieces = PARSER.parse_pieces(timestamp)?;
/// let time = pieces.time().unwrap_or_else(jiff::civil::Time::midnight);
/// let dt = pieces.date().to_datetime(time);
/// let tz = match pieces.to_time_zone()? {
/// Some(tz) => tz,
/// None => {
/// let Some(offset) = pieces.to_numeric_offset() else {
/// let msg = format!(
/// "timestamp `{timestamp}` has no time zone \
/// or offset, and thus cannot be parsed into \
/// an instant",
/// );
/// return Err(msg.into());
/// };
/// TimeZone::fixed(offset)
/// }
/// };
/// // We don't bother with offset conflict resolution. And note that
/// // this uses automatic "compatible" disambiguation in the case of
/// // discontinuities. Of course, this is all moot if `TimeZone` is
/// // fixed. The above code handles the case where it isn't!
/// let zdt = tz.to_zoned(dt)?;
/// assert_eq!(zdt.to_string(), "2025-01-02T15:13:00-05:00[-05:00]");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: work around errors when a `Z` (Zulu) offset is encountered
///
/// Because parsing a date with a `Z` offset and interpreting it as
/// a civil date or time is usually a bug, it is forbidden:
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimeParser};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// assert_eq!(
/// PARSER.parse_date("2024-03-10T00:00:00Z").unwrap_err().to_string(),
/// "cannot parse civil date from string with a Zulu offset, \
/// parse as a `Timestamp` and convert to a civil date instead",
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// But this sort of error checking doesn't happen when you parse into a
/// [`Pieces`]. You just get what was parsed, which lets you extract a
/// date even if the higher level APIs forbid it:
///
/// ```
/// use jiff::{civil, fmt::temporal::DateTimeParser, tz::Offset};
///
/// static PARSER: DateTimeParser = DateTimeParser::new();
///
/// let pieces = PARSER.parse_pieces("2024-03-10T00:00:00Z")?;
/// assert_eq!(pieces.date(), civil::date(2024, 3, 10));
/// assert_eq!(pieces.time(), Some(civil::time(0, 0, 0, 0)));
/// assert_eq!(pieces.to_numeric_offset(), Some(Offset::UTC));
/// assert_eq!(pieces.to_time_zone()?, None);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// This is usually not the right thing to do. It isn't even suggested in
/// the error message above. But if you know it's the right thing, then
/// `Pieces` will let you do it.
pub fn parse_pieces<'i, I: ?Sized + AsRef<[u8]> + 'i>(
&self,
input: &'i I,
) -> Result<Pieces<'i>, Error> {
let input = input.as_ref();
let parsed = self.p.parse_temporal_datetime(input)?.into_full()?;
let pieces = parsed.to_pieces()?;
Ok(pieces)
}
}
/// A printer for Temporal datetimes.
///
/// This printer converts an in memory representation of a datetime related
/// type to a machine (but also human) readable format. Using this printer, one
/// can convert [`Zoned`], [`Timestamp`], [`civil::DateTime`], [`civil::Date`]
/// or [`civil::Time`] values to a string. Note that all of those types provide
/// [`Diplay`](core::fmt::Display) implementations that utilize the default
/// configuration of this printer. However, this printer can be configured to
/// behave differently and can also print directly to anything that implements
/// the [`fmt::Write`](Write) trait.
///
/// See the [`fmt::temporal`](crate::fmt::temporal) module documentation for
/// more information on the specific format used. Note that the Temporal
/// datetime parser is strictly more flexible than what is supported by this
/// printer. For example, parsing `2024-06-15T07:00-04[America/New_York]` will
/// work just fine, even though the seconds are omitted. However, this printer
/// provides no way to write a datetime without the second component.
///
/// # Example
///
/// This example shows how to print a `Zoned` value with a space separating
/// the date and time instead of the more standard `T` separator.
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimePrinter};
///
/// // A printer can be created in a const context.
/// const PRINTER: DateTimePrinter = DateTimePrinter::new().separator(b' ');
///
/// let zdt = date(2024, 6, 15).at(7, 0, 0, 123456789).in_tz("America/New_York")?;
///
/// let mut buf = String::new();
/// // Printing to a `String` can never fail.
/// PRINTER.print_zoned(&zdt, &mut buf).unwrap();
/// assert_eq!(buf, "2024-06-15 07:00:00.123456789-04:00[America/New_York]");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: using adapters with `std::io::Write` and `std::fmt::Write`
///
/// By using the [`StdIoWrite`](super::StdIoWrite) and
/// [`StdFmtWrite`](super::StdFmtWrite) adapters, one can print datetimes
/// directly to implementations of `std::io::Write` and `std::fmt::Write`,
/// respectively. The example below demonstrates writing to anything
/// that implements `std::io::Write`. Similar code can be written for
/// `std::fmt::Write`.
///
/// ```no_run
/// use std::{fs::File, io::{BufWriter, Write}, path::Path};
///
/// use jiff::{civil::date, fmt::{StdIoWrite, temporal::DateTimePrinter}};
///
/// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("America/New_York")?;
///
/// let path = Path::new("/tmp/output");
/// let mut file = BufWriter::new(File::create(path)?);
/// DateTimePrinter::new().print_zoned(&zdt, StdIoWrite(&mut file)).unwrap();
/// file.flush()?;
/// assert_eq!(
/// std::fs::read_to_string(path)?,
/// "2024-06-15T07:00:00-04:00[America/New_York]",
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Debug)]
pub struct DateTimePrinter {
p: printer::DateTimePrinter,
}
impl DateTimePrinter {
/// Create a new Temporal datetime printer with the default configuration.
pub const fn new() -> DateTimePrinter {
DateTimePrinter { p: printer::DateTimePrinter::new() }
}
/// Use lowercase for the datetime separator and the `Z` (Zulu) UTC offset.
///
/// This is disabled by default.
///
/// # Example
///
/// This example shows how to print a `Zoned` value with a lowercase
/// datetime separator.
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimePrinter};
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new().lowercase(true);
///
/// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("America/New_York")?;
///
/// let mut buf = String::new();
/// // Printing to a `String` can never fail.
/// PRINTER.print_zoned(&zdt, &mut buf).unwrap();
/// assert_eq!(buf, "2024-06-15t07:00:00-04:00[America/New_York]");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub const fn lowercase(mut self, yes: bool) -> DateTimePrinter {
self.p = self.p.lowercase(yes);
self
}
/// Use the given ASCII character to separate the date and time when
/// printing [`Zoned`], [`Timestamp`] or [`civil::DateTime`] values.
///
/// This is set to `T` by default.
///
/// # Example
///
/// This example shows how to print a `Zoned` value with a different
/// datetime separator.
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimePrinter};
///
/// // We use a weird non-standard character here, but typically one would
/// // use this method with an ASCII space.
/// const PRINTER: DateTimePrinter = DateTimePrinter::new().separator(b'~');
///
/// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("America/New_York")?;
///
/// let mut buf = String::new();
/// // Printing to a `String` can never fail.
/// PRINTER.print_zoned(&zdt, &mut buf).unwrap();
/// assert_eq!(buf, "2024-06-15~07:00:00-04:00[America/New_York]");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub const fn separator(mut self, ascii_char: u8) -> DateTimePrinter {
self.p = self.p.separator(ascii_char);
self
}
/// Set the precision to use for formatting the fractional second component
/// of a time.
///
/// The default is `None`, which will automatically set the precision based
/// on the value.
///
/// When the precision is set to `N`, you'll always get precisely `N`
/// digits after a decimal point (unless `N==0`, then no fractional
/// component is printed), even if they are `0`.
///
/// # Example
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimePrinter};
///
/// const PRINTER: DateTimePrinter =
/// DateTimePrinter::new().precision(Some(3));
///
/// let zdt = date(2024, 6, 15).at(7, 0, 0, 123_456_789).in_tz("US/Eastern")?;
///
/// let mut buf = String::new();
/// // Printing to a `String` can never fail.
/// PRINTER.print_zoned(&zdt, &mut buf).unwrap();
/// assert_eq!(buf, "2024-06-15T07:00:00.123-04:00[US/Eastern]");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: available via formatting machinery
///
/// When formatting datetime types that may contain a fractional second
/// component, this can be set via Rust's formatting DSL. Specifically,
/// it corresponds to the [`std::fmt::Formatter::precision`] setting.
///
/// ```
/// use jiff::civil::date;
///
/// let zdt = date(2024, 6, 15).at(7, 0, 0, 123_000_000).in_tz("US/Eastern")?;
/// assert_eq!(
/// format!("{zdt:.6}"),
/// "2024-06-15T07:00:00.123000-04:00[US/Eastern]",
/// );
/// // Precision values greater than 9 are clamped to 9.
/// assert_eq!(
/// format!("{zdt:.300}"),
/// "2024-06-15T07:00:00.123000000-04:00[US/Eastern]",
/// );
/// // A precision of 0 implies the entire fractional
/// // component is always truncated.
/// assert_eq!(
/// format!("{zdt:.0}"),
/// "2024-06-15T07:00:00-04:00[US/Eastern]",
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub const fn precision(
mut self,
precision: Option<u8>,
) -> DateTimePrinter {
self.p = self.p.precision(precision);
self
}
/// Format a `Zoned` datetime into a string.
///
/// This is a convenience routine for [`DateTimePrinter::print_zoned`] with
/// a `String`.
///
/// # Example
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimePrinter};
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new();
///
/// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("America/New_York")?;
/// assert_eq!(
/// PRINTER.zoned_to_string(&zdt),
/// "2024-06-15T07:00:00-04:00[America/New_York]",
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "alloc")]
pub fn zoned_to_string(&self, zdt: &Zoned) -> alloc::string::String {
let mut buf = alloc::string::String::with_capacity(4);
// OK because writing to `String` never fails.
self.print_zoned(zdt, &mut buf).unwrap();
buf
}
/// Format a `Timestamp` datetime into a string.
///
/// This will always return an RFC 3339 compatible string with a `Z` or
/// Zulu offset. Zulu is chosen in accordance with RFC 9557's update to
/// RFC 3339 that establishes the `-00:00` offset as equivalent to Zulu:
///
/// > If the time in UTC is known, but the offset to local time is
/// > unknown, this can be represented with an offset of "Z". (The
/// > original version of this specification provided -00:00 for this
/// > purpose, which is not allowed by ISO8601:2000 and therefore is
/// > less interoperable; Section 3.3 of RFC5322 describes a related
/// > convention for email, which does not have this problem). This
/// > differs semantically from an offset of +00:00, which implies that
/// > UTC is the preferred reference point for the specified time.
///
/// In other words, both Zulu time and `-00:00` mean "the time in UTC is
/// known, but the offset to local time is unknown."
///
/// If you need to format an RFC 3339 timestamp with a specific offset,
/// use [`DateTimePrinter::timestamp_with_offset_to_string`].
///
/// This is a convenience routine for [`DateTimePrinter::print_timestamp`]
/// with a `String`.
///
/// # Example
///
/// ```
/// use jiff::{fmt::temporal::DateTimePrinter, Timestamp};
///
/// let timestamp = Timestamp::new(0, 1)
/// .expect("one nanosecond after Unix epoch is always valid");
/// assert_eq!(
/// DateTimePrinter::new().timestamp_to_string(×tamp),
/// "1970-01-01T00:00:00.000000001Z",
/// );
/// ```
#[cfg(feature = "alloc")]
pub fn timestamp_to_string(
&self,
timestamp: &Timestamp,
) -> alloc::string::String {
let mut buf = alloc::string::String::with_capacity(4);
// OK because writing to `String` never fails.
self.print_timestamp(timestamp, &mut buf).unwrap();
buf
}
/// Format a `Timestamp` datetime into a string with the given offset.
///
/// This will always return an RFC 3339 compatible string with an offset.
///
/// This will never use either `Z` (for Zulu time) or `-00:00` as an
/// offset. This is because Zulu time (and `-00:00`) mean "the time in UTC
/// is known, but the offset to local time is unknown." Since this routine
/// accepts an explicit offset, the offset is known. For example,
/// `Offset::UTC` will be formatted as `+00:00`.
///
/// To format an RFC 3339 string in Zulu time, use
/// [`DateTimePrinter::timestamp_to_string`].
///
/// This is a convenience routine for
/// [`DateTimePrinter::print_timestamp_with_offset`] with a `String`.
///
/// # Example
///
/// ```
/// use jiff::{fmt::temporal::DateTimePrinter, tz, Timestamp};
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new();
///
/// let timestamp = Timestamp::new(0, 1)
/// .expect("one nanosecond after Unix epoch is always valid");
/// assert_eq!(
/// PRINTER.timestamp_with_offset_to_string(×tamp, tz::offset(-5)),
/// "1969-12-31T19:00:00.000000001-05:00",
/// );
/// ```
///
/// # Example: `Offset::UTC` formats as `+00:00`
///
/// ```
/// use jiff::{fmt::temporal::DateTimePrinter, tz::Offset, Timestamp};
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new();
///
/// let timestamp = Timestamp::new(0, 1)
/// .expect("one nanosecond after Unix epoch is always valid");
/// assert_eq!(
/// PRINTER.timestamp_with_offset_to_string(×tamp, Offset::UTC),
/// "1970-01-01T00:00:00.000000001+00:00",
/// );
/// ```
#[cfg(feature = "alloc")]
pub fn timestamp_with_offset_to_string(
&self,
timestamp: &Timestamp,
offset: Offset,
) -> alloc::string::String {
let mut buf = alloc::string::String::with_capacity(4);
// OK because writing to `String` never fails.
self.print_timestamp_with_offset(timestamp, offset, &mut buf).unwrap();
buf
}
/// Format a `civil::DateTime` into a string.
///
/// This is a convenience routine for [`DateTimePrinter::print_datetime`]
/// with a `String`.
///
/// # Example
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimePrinter};
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new();
///
/// let dt = date(2024, 6, 15).at(7, 0, 0, 0);
/// assert_eq!(PRINTER.datetime_to_string(&dt), "2024-06-15T07:00:00");
/// ```
#[cfg(feature = "alloc")]
pub fn datetime_to_string(
&self,
dt: &civil::DateTime,
) -> alloc::string::String {
let mut buf = alloc::string::String::with_capacity(4);
// OK because writing to `String` never fails.
self.print_datetime(dt, &mut buf).unwrap();
buf
}
/// Format a `civil::Date` into a string.
///
/// This is a convenience routine for [`DateTimePrinter::print_date`]
/// with a `String`.
///
/// # Example
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimePrinter};
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new();
///
/// let d = date(2024, 6, 15);
/// assert_eq!(PRINTER.date_to_string(&d), "2024-06-15");
/// ```
#[cfg(feature = "alloc")]
pub fn date_to_string(&self, date: &civil::Date) -> alloc::string::String {
let mut buf = alloc::string::String::with_capacity(4);
// OK because writing to `String` never fails.
self.print_date(date, &mut buf).unwrap();
buf
}
/// Format a `civil::Time` into a string.
///
/// This is a convenience routine for [`DateTimePrinter::print_time`]
/// with a `String`.
///
/// # Example
///
/// ```
/// use jiff::{civil::time, fmt::temporal::DateTimePrinter};
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new();
///
/// let t = time(7, 0, 0, 0);
/// assert_eq!(PRINTER.time_to_string(&t), "07:00:00");
/// ```
#[cfg(feature = "alloc")]
pub fn time_to_string(&self, time: &civil::Time) -> alloc::string::String {
let mut buf = alloc::string::String::with_capacity(4);
// OK because writing to `String` never fails.
self.print_time(time, &mut buf).unwrap();
buf
}
/// Format a `TimeZone` into a string.
///
/// This is a convenience routine for [`DateTimePrinter::print_time_zone`].
///
/// # Errors
///
/// In some rare cases, serialization may fail when there is no succinct
/// representation of a time zone. One specific case in which this
/// occurs is when `TimeZone` is a user's system time zone derived from
/// `/etc/localtime`, but where an IANA time zone identifier could not
/// be found. This can occur, for example, when `/etc/localtime` is not
/// symlinked to an entry in `/usr/share/zoneinfo`.
///
/// # Example
///
/// ```
/// use jiff::{fmt::temporal::DateTimePrinter, tz::{self, TimeZone}};
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new();
///
/// // IANA time zone
/// let tz = TimeZone::get("US/Eastern")?;
/// assert_eq!(PRINTER.time_zone_to_string(&tz)?, "US/Eastern");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "alloc")]
pub fn time_zone_to_string(
&self,
tz: &TimeZone,
) -> Result<alloc::string::String, Error> {
let mut buf = alloc::string::String::with_capacity(4);
// Writing to a `String` itself will never fail, but this could fail
// as described above in the docs.
self.print_time_zone(tz, &mut buf)?;
Ok(buf)
}
/// Format `Pieces` of a Temporal datetime.
///
/// This is a convenience routine for [`DateTimePrinter::print_pieces`]
/// with a `String`.
///
/// # Example
///
/// ```
/// use jiff::{
/// fmt::temporal::{DateTimePrinter, Pieces},
/// tz::offset,
/// Timestamp,
/// };
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new();
///
/// let pieces = Pieces::from(Timestamp::UNIX_EPOCH);
/// assert_eq!(
/// PRINTER.pieces_to_string(&pieces),
/// "1970-01-01T00:00:00Z",
/// );
///
/// let pieces = Pieces::from((Timestamp::UNIX_EPOCH, offset(0)));
/// assert_eq!(
/// PRINTER.pieces_to_string(&pieces),
/// "1970-01-01T00:00:00+00:00",
/// );
///
/// let pieces = Pieces::from((Timestamp::UNIX_EPOCH, offset(-5)));
/// assert_eq!(
/// PRINTER.pieces_to_string(&pieces),
/// "1969-12-31T19:00:00-05:00",
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "alloc")]
pub fn pieces_to_string(&self, pieces: &Pieces) -> alloc::string::String {
let mut buf = alloc::string::String::with_capacity(4);
// OK because writing to `String` never fails.
self.print_pieces(pieces, &mut buf).unwrap();
buf
}
/// Print a `Zoned` datetime to the given writer.
///
/// # Errors
///
/// This only returns an error when writing to the given [`Write`]
/// implementation would fail. Some such implementations, like for `String`
/// and `Vec<u8>`, never fail (unless memory allocation fails). In such
/// cases, it would be appropriate to call `unwrap()` on the result.
///
/// # Example
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimePrinter};
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new();
///
/// let zdt = date(2024, 6, 15).at(7, 0, 0, 0).in_tz("America/New_York")?;
///
/// let mut buf = String::new();
/// // Printing to a `String` can never fail.
/// PRINTER.print_zoned(&zdt, &mut buf).unwrap();
/// assert_eq!(buf, "2024-06-15T07:00:00-04:00[America/New_York]");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn print_zoned<W: Write>(
&self,
zdt: &Zoned,
wtr: W,
) -> Result<(), Error> {
self.p.print_zoned(zdt, wtr)
}
/// Print a `Timestamp` datetime to the given writer.
///
/// This will always write an RFC 3339 compatible string with a `Z` or
/// Zulu offset. Zulu is chosen in accordance with RFC 9557's update to
/// RFC 3339 that establishes the `-00:00` offset as equivalent to Zulu:
///
/// > If the time in UTC is known, but the offset to local time is
/// > unknown, this can be represented with an offset of "Z". (The
/// > original version of this specification provided -00:00 for this
/// > purpose, which is not allowed by ISO8601:2000 and therefore is
/// > less interoperable; Section 3.3 of RFC5322 describes a related
/// > convention for email, which does not have this problem). This
/// > differs semantically from an offset of +00:00, which implies that
/// > UTC is the preferred reference point for the specified time.
///
/// In other words, both Zulu time and `-00:00` mean "the time in UTC is
/// known, but the offset to local time is unknown."
///
/// If you need to write an RFC 3339 timestamp with a specific offset,
/// use [`DateTimePrinter::print_timestamp_with_offset`].
///
/// # Errors
///
/// This only returns an error when writing to the given [`Write`]
/// implementation would fail. Some such implementations, like for `String`
/// and `Vec<u8>`, never fail (unless memory allocation fails). In such
/// cases, it would be appropriate to call `unwrap()` on the result.
///
/// # Example
///
/// ```
/// use jiff::{fmt::temporal::DateTimePrinter, Timestamp};
///
/// let timestamp = Timestamp::new(0, 1)
/// .expect("one nanosecond after Unix epoch is always valid");
///
/// let mut buf = String::new();
/// // Printing to a `String` can never fail.
/// DateTimePrinter::new().print_timestamp(×tamp, &mut buf).unwrap();
/// assert_eq!(buf, "1970-01-01T00:00:00.000000001Z");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn print_timestamp<W: Write>(
&self,
timestamp: &Timestamp,
wtr: W,
) -> Result<(), Error> {
self.p.print_timestamp(timestamp, None, wtr)
}
/// Print a `Timestamp` datetime to the given writer with the given offset.
///
/// This will always write an RFC 3339 compatible string with an offset.
///
/// This will never write either `Z` (for Zulu time) or `-00:00` as an
/// offset. This is because Zulu time (and `-00:00`) mean "the time in UTC
/// is known, but the offset to local time is unknown." Since this routine
/// accepts an explicit offset, the offset is known. For example,
/// `Offset::UTC` will be formatted as `+00:00`.
///
/// To write an RFC 3339 string in Zulu time, use
/// [`DateTimePrinter::print_timestamp`].
///
/// # Errors
///
/// This only returns an error when writing to the given [`Write`]
/// implementation would fail. Some such implementations, like for `String`
/// and `Vec<u8>`, never fail (unless memory allocation fails). In such
/// cases, it would be appropriate to call `unwrap()` on the result.
///
/// # Example
///
/// ```
/// use jiff::{fmt::temporal::DateTimePrinter, tz, Timestamp};
///
/// let timestamp = Timestamp::new(0, 1)
/// .expect("one nanosecond after Unix epoch is always valid");
///
/// let mut buf = String::new();
/// // Printing to a `String` can never fail.
/// DateTimePrinter::new().print_timestamp_with_offset(
/// ×tamp,
/// tz::offset(-5),
/// &mut buf,
/// ).unwrap();
/// assert_eq!(buf, "1969-12-31T19:00:00.000000001-05:00");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: `Offset::UTC` formats as `+00:00`
///
/// ```
/// use jiff::{fmt::temporal::DateTimePrinter, tz::Offset, Timestamp};
///
/// let timestamp = Timestamp::new(0, 1)
/// .expect("one nanosecond after Unix epoch is always valid");
///
/// let mut buf = String::new();
/// // Printing to a `String` can never fail.
/// DateTimePrinter::new().print_timestamp_with_offset(
/// ×tamp,
/// Offset::UTC, // equivalent to `Offset::from_hours(0)`
/// &mut buf,
/// ).unwrap();
/// assert_eq!(buf, "1970-01-01T00:00:00.000000001+00:00");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn print_timestamp_with_offset<W: Write>(
&self,
timestamp: &Timestamp,
offset: Offset,
wtr: W,
) -> Result<(), Error> {
self.p.print_timestamp(timestamp, Some(offset), wtr)
}
/// Print a `civil::DateTime` to the given writer.
///
/// # Errors
///
/// This only returns an error when writing to the given [`Write`]
/// implementation would fail. Some such implementations, like for `String`
/// and `Vec<u8>`, never fail (unless memory allocation fails). In such
/// cases, it would be appropriate to call `unwrap()` on the result.
///
/// # Example
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimePrinter};
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new();
///
/// let d = date(2024, 6, 15).at(7, 0, 0, 0);
///
/// let mut buf = String::new();
/// // Printing to a `String` can never fail.
/// PRINTER.print_datetime(&d, &mut buf).unwrap();
/// assert_eq!(buf, "2024-06-15T07:00:00");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn print_datetime<W: Write>(
&self,
dt: &civil::DateTime,
wtr: W,
) -> Result<(), Error> {
self.p.print_datetime(dt, wtr)
}
/// Print a `civil::Date` to the given writer.
///
/// # Errors
///
/// This only returns an error when writing to the given [`Write`]
/// implementation would fail. Some such implementations, like for `String`
/// and `Vec<u8>`, never fail (unless memory allocation fails). In such
/// cases, it would be appropriate to call `unwrap()` on the result.
///
/// # Example
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimePrinter};
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new();
///
/// let d = date(2024, 6, 15);
///
/// let mut buf = String::new();
/// // Printing to a `String` can never fail.
/// PRINTER.print_date(&d, &mut buf).unwrap();
/// assert_eq!(buf, "2024-06-15");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn print_date<W: Write>(
&self,
date: &civil::Date,
wtr: W,
) -> Result<(), Error> {
self.p.print_date(date, wtr)
}
/// Print a `civil::Time` to the given writer.
///
/// # Errors
///
/// This only returns an error when writing to the given [`Write`]
/// implementation would fail. Some such implementations, like for `String`
/// and `Vec<u8>`, never fail (unless memory allocation fails). In such
/// cases, it would be appropriate to call `unwrap()` on the result.
///
/// # Example
///
/// ```
/// use jiff::{civil::time, fmt::temporal::DateTimePrinter};
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new();
///
/// let t = time(7, 0, 0, 0);
///
/// let mut buf = String::new();
/// // Printing to a `String` can never fail.
/// PRINTER.print_time(&t, &mut buf).unwrap();
/// assert_eq!(buf, "07:00:00");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn print_time<W: Write>(
&self,
time: &civil::Time,
wtr: W,
) -> Result<(), Error> {
self.p.print_time(time, wtr)
}
/// Print a `TimeZone`.
///
/// This will emit one of three different categories of strings:
///
/// 1. An IANA Time Zone Database identifier. For example,
/// `America/New_York` or `UTC`.
/// 2. A fixed offset. For example, `-05:00` or `-00:44:30`.
/// 3. A POSIX time zone string. For example, `EST5EDT,M3.2.0,M11.1.0`.
///
/// # Differences with RFC 9557 annotations
///
/// Jiff's [`Offset`] has second precision. If a `TimeZone` is a fixed
/// offset and has fractional minutes, then they will be expressed in the
/// `[+-]HH:MM:SS` format. Otherwise, the `:SS` will be omitted.
///
/// This differs from RFC 3339 and RFC 9557 because neither support
/// sub-minute resolution in UTC offsets. Indeed, if one were to format
/// a `Zoned` with an offset that contains fractional minutes, the offset
/// would be rounded to the nearest minute to preserve compatibility with
/// RFC 3339 and RFC 9557. However, this routine does no such rounding.
/// This is because there is no RFC standardizing the serialization of
/// a lone time zone, and there is otherwise no need to reduce an offset's
/// precision.
///
/// # Errors
///
/// In some rare cases, serialization may fail when there is no succinct
/// representation of a time zone. One specific case in which this
/// occurs is when `TimeZone` is a user's system time zone derived from
/// `/etc/localtime`, but where an IANA time zone identifier could not
/// be found. This can occur, for example, when `/etc/localtime` is not
/// symlinked to an entry in `/usr/share/zoneinfo`.
///
/// An error can also occur when writing to the given [`Write`]
/// implementation would fail. Some such implementations, like for `String`
/// and `Vec<u8>`, never fail (unless memory allocation fails).
///
/// # Example
///
/// ```
/// use jiff::{fmt::temporal::DateTimePrinter, tz::{self, TimeZone}};
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new();
///
/// // IANA time zone
/// let tz = TimeZone::get("US/Eastern")?;
/// let mut buf = String::new();
/// PRINTER.print_time_zone(&tz, &mut buf)?;
/// assert_eq!(buf, "US/Eastern");
///
/// // Fixed offset
/// let tz = TimeZone::fixed(tz::offset(-5));
/// let mut buf = String::new();
/// PRINTER.print_time_zone(&tz, &mut buf)?;
/// assert_eq!(buf, "-05:00");
///
/// // POSIX time zone
/// let tz = TimeZone::posix("EST5EDT,M3.2.0,M11.1.0")?;
/// let mut buf = String::new();
/// PRINTER.print_time_zone(&tz, &mut buf)?;
/// assert_eq!(buf, "EST5EDT,M3.2.0,M11.1.0");
///
/// // The error case for a time zone that doesn't fall
/// // into one of the three categories about is not easy
/// // to create artificially. The only way, at time of
/// // writing, to produce it is via `TimeZone::system()`
/// // with a non-symlinked `/etc/timezone`. (Or `TZ` set
/// // to the path of a similar file.)
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn print_time_zone<W: Write>(
&self,
tz: &TimeZone,
wtr: W,
) -> Result<(), Error> {
self.p.print_time_zone(tz, wtr)
}
/// Print the `Pieces` of a Temporal datetime.
///
/// # Errors
///
/// This only returns an error when writing to the given [`Write`]
/// implementation would fail. Some such implementations, like for `String`
/// and `Vec<u8>`, never fail (unless memory allocation fails). In such
/// cases, it would be appropriate to call `unwrap()` on the result.
///
/// # Example
///
/// ```
/// use jiff::{civil::date, fmt::temporal::{DateTimePrinter, Pieces}};
///
/// const PRINTER: DateTimePrinter = DateTimePrinter::new();
///
/// let pieces = Pieces::from(date(2024, 6, 15))
/// .with_time_zone_name("US/Eastern");
///
/// let mut buf = String::new();
/// // Printing to a `String` can never fail.
/// PRINTER.print_pieces(&pieces, &mut buf).unwrap();
/// assert_eq!(buf, "2024-06-15[US/Eastern]");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn print_pieces<W: Write>(
&self,
pieces: &Pieces,
wtr: W,
) -> Result<(), Error> {
self.p.print_pieces(pieces, wtr)
}
}
/// A parser for Temporal durations.
///
/// Note that in Jiff, a "Temporal duration" is called a "span."
///
/// See the [`fmt::temporal`](crate::fmt::temporal) module documentation for
/// more information on the specific format used.
///
/// # Example
///
/// This example shows how to parse a [`Span`] from a byte string. (That is,
/// `&[u8]` and not a `&str`.)
///
/// ```
/// use jiff::{fmt::temporal::SpanParser, ToSpan};
///
/// // A parser can be created in a const context.
/// static PARSER: SpanParser = SpanParser::new();
///
/// let span = PARSER.parse_span(b"P3y7m25dT7h36m")?;
/// assert_eq!(
/// span,
/// 3.years().months(7).days(25).hours(7).minutes(36).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Debug)]
pub struct SpanParser {
p: parser::SpanParser,
}
impl SpanParser {
/// Create a new Temporal datetime printer with the default configuration.
#[inline]
pub const fn new() -> SpanParser {
SpanParser { p: parser::SpanParser::new() }
}
/// Parse a span string into a [`Span`] value.
///
/// # Errors
///
/// This returns an error if the span string given is invalid or if it
/// is valid but doesn't fit in the span range supported by Jiff.
///
/// # Example
///
/// This shows a basic example of using this routine.
///
/// ```
/// use jiff::{fmt::temporal::SpanParser, ToSpan};
///
/// static PARSER: SpanParser = SpanParser::new();
///
/// let span = PARSER.parse_span(b"PT48m")?;
/// assert_eq!(span, 48.minutes().fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Note that unless you need to parse a span from a byte string,
/// at time of writing, there is no other advantage to using this
/// parser directly. It is likely more convenient to just use the
/// [`FromStr`](std::str::FromStr) trait implementation on [`Span`]:
///
/// ```
/// use jiff::{Span, ToSpan};
///
/// let span = "PT48m".parse::<Span>()?;
/// assert_eq!(span, 48.minutes().fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn parse_span<I: AsRef<[u8]>>(&self, input: I) -> Result<Span, Error> {
let input = input.as_ref();
let parsed = self.p.parse_temporal_duration(input)?;
let span = parsed.into_full()?;
Ok(span)
}
/// Parse an ISO 8601 duration string into a [`SignedDuration`] value.
///
/// # Errors
///
/// This returns an error if the span string given is invalid or if it is
/// valid but can't be converted to a `SignedDuration`. This can occur
/// when the parsed time exceeds the minimum and maximum `SignedDuration`
/// values, or if there are any non-zero units greater than hours.
///
/// # Example
///
/// This shows a basic example of using this routine.
///
/// ```
/// use jiff::{fmt::temporal::SpanParser, SignedDuration};
///
/// static PARSER: SpanParser = SpanParser::new();
///
/// let duration = PARSER.parse_duration(b"PT48m")?;
/// assert_eq!(duration, SignedDuration::from_mins(48));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Note that unless you need to parse a span from a byte string,
/// at time of writing, there is no other advantage to using this
/// parser directly. It is likely more convenient to just use
/// the [`FromStr`](std::str::FromStr) trait implementation on
/// [`SignedDuration`]:
///
/// ```
/// use jiff::SignedDuration;
///
/// let duration = "PT48m".parse::<SignedDuration>()?;
/// assert_eq!(duration, SignedDuration::from_mins(48));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn parse_duration<I: AsRef<[u8]>>(
&self,
input: I,
) -> Result<SignedDuration, Error> {
let input = input.as_ref();
let parsed = self.p.parse_signed_duration(input)?;
let dur = parsed.into_full()?;
Ok(dur)
}
}
/// A printer for Temporal durations.
///
/// Note that in Jiff, a "Temporal duration" is called a "span."
///
/// This printer converts an in memory representation of a duration of time
/// to a machine (but also human) readable format. Using this printer,
/// one can convert a [`Span`] to a string. Note that a `Span` provides a
/// [`Display`](std::fmt::Display) trait implementation that utilize the
/// default configuration of this printer. However, this printer can print
/// directly to anything that implements the [`fmt::Write`](Write) trait.
///
/// See the [`fmt::temporal`](crate::fmt::temporal) module documentation for
/// more information on the specific format used.
///
/// # Example
///
/// This is a basic example showing how to print a [`Span`] directly to a
/// `Vec<u8>`.
///
/// ```
/// use jiff::{fmt::temporal::SpanPrinter, ToSpan};
///
/// // A printer can be created in a const context.
/// const PRINTER: SpanPrinter = SpanPrinter::new();
///
/// let span = 48.minutes();
/// let mut buf = vec![];
/// // Printing to a `Vec<u8>` can never fail.
/// PRINTER.print_span(&span, &mut buf).unwrap();
/// assert_eq!(buf, "PT48M".as_bytes());
/// ```
///
/// # Example: using adapters with `std::io::Write` and `std::fmt::Write`
///
/// By using the [`StdIoWrite`](super::StdIoWrite) and
/// [`StdFmtWrite`](super::StdFmtWrite) adapters, one can print spans
/// directly to implementations of `std::io::Write` and `std::fmt::Write`,
/// respectively. The example below demonstrates writing to anything
/// that implements `std::io::Write`. Similar code can be written for
/// `std::fmt::Write`.
///
/// ```no_run
/// use std::{fs::File, io::{BufWriter, Write}, path::Path};
///
/// use jiff::{fmt::{StdIoWrite, temporal::SpanPrinter}, ToSpan};
///
/// let span = 48.minutes();
///
/// let path = Path::new("/tmp/output");
/// let mut file = BufWriter::new(File::create(path)?);
/// SpanPrinter::new().print_span(&span, StdIoWrite(&mut file)).unwrap();
/// file.flush()?;
/// assert_eq!(std::fs::read_to_string(path)?, "PT48m");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Debug)]
pub struct SpanPrinter {
p: printer::SpanPrinter,
}
impl SpanPrinter {
/// Create a new Temporal span printer with the default configuration.
#[inline]
pub const fn new() -> SpanPrinter {
SpanPrinter { p: printer::SpanPrinter::new() }
}
/// Use lowercase for unit designator labels.
///
/// By default, unit designator labels are written in uppercase.
///
/// # Example
///
/// This shows the difference between the default (uppercase) and enabling
/// lowercase. Lowercase unit designator labels tend to be easier to read
/// (in this author's opinion), but they aren't as broadly supported since
/// they are an extension to ISO 8601.
///
/// ```
/// use jiff::{fmt::temporal::SpanPrinter, ToSpan};
///
/// let span = 5.years().days(10).hours(1);
/// let printer = SpanPrinter::new();
/// assert_eq!(printer.span_to_string(&span), "P5Y10DT1H");
/// assert_eq!(printer.lowercase(true).span_to_string(&span), "P5y10dT1h");
/// ```
#[inline]
pub const fn lowercase(self, yes: bool) -> SpanPrinter {
SpanPrinter { p: self.p.lowercase(yes) }
}
/// Format a `Span` into a string.
///
/// This is a convenience routine for [`SpanPrinter::print_span`] with
/// a `String`.
///
/// # Example
///
/// ```
/// use jiff::{fmt::temporal::SpanPrinter, ToSpan};
///
/// const PRINTER: SpanPrinter = SpanPrinter::new();
///
/// let span = 3.years().months(5);
/// assert_eq!(PRINTER.span_to_string(&span), "P3Y5M");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "alloc")]
pub fn span_to_string(&self, span: &Span) -> alloc::string::String {
let mut buf = alloc::string::String::with_capacity(4);
// OK because writing to `String` never fails.
self.print_span(span, &mut buf).unwrap();
buf
}
/// Format a `SignedDuration` into a string.
///
/// This balances the units of the duration up to at most hours
/// automatically.
///
/// This is a convenience routine for [`SpanPrinter::print_duration`] with
/// a `String`.
///
/// # Example
///
/// ```
/// use jiff::{fmt::temporal::SpanPrinter, SignedDuration};
///
/// const PRINTER: SpanPrinter = SpanPrinter::new();
///
/// let dur = SignedDuration::new(86_525, 123_000_789);
/// assert_eq!(PRINTER.duration_to_string(&dur), "PT24H2M5.123000789S");
/// assert_eq!(PRINTER.duration_to_string(&-dur), "-PT24H2M5.123000789S");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[cfg(feature = "alloc")]
pub fn duration_to_string(
&self,
duration: &SignedDuration,
) -> alloc::string::String {
let mut buf = alloc::string::String::with_capacity(4);
// OK because writing to `String` never fails.
self.print_duration(duration, &mut buf).unwrap();
buf
}
/// Print a `Span` to the given writer.
///
/// # Errors
///
/// This only returns an error when writing to the given [`Write`]
/// implementation would fail. Some such implementations, like for `String`
/// and `Vec<u8>`, never fail (unless memory allocation fails). In such
/// cases, it would be appropriate to call `unwrap()` on the result.
///
/// # Example
///
/// ```
/// use jiff::{fmt::temporal::SpanPrinter, ToSpan};
///
/// const PRINTER: SpanPrinter = SpanPrinter::new();
///
/// let span = 3.years().months(5);
///
/// let mut buf = String::new();
/// // Printing to a `String` can never fail.
/// PRINTER.print_span(&span, &mut buf).unwrap();
/// assert_eq!(buf, "P3Y5M");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn print_span<W: Write>(
&self,
span: &Span,
wtr: W,
) -> Result<(), Error> {
self.p.print_span(span, wtr)
}
/// Print a `SignedDuration` to the given writer.
///
/// This balances the units of the duration up to at most hours
/// automatically.
///
/// # Errors
///
/// This only returns an error when writing to the given [`Write`]
/// implementation would fail. Some such implementations, like for `String`
/// and `Vec<u8>`, never fail (unless memory allocation fails). In such
/// cases, it would be appropriate to call `unwrap()` on the result.
///
/// # Example
///
/// ```
/// use jiff::{fmt::temporal::SpanPrinter, SignedDuration};
///
/// const PRINTER: SpanPrinter = SpanPrinter::new();
///
/// let dur = SignedDuration::new(86_525, 123_000_789);
///
/// let mut buf = String::new();
/// // Printing to a `String` can never fail.
/// PRINTER.print_duration(&dur, &mut buf).unwrap();
/// assert_eq!(buf, "PT24H2M5.123000789S");
///
/// // Negative durations are supported.
/// buf.clear();
/// PRINTER.print_duration(&-dur, &mut buf).unwrap();
/// assert_eq!(buf, "-PT24H2M5.123000789S");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub fn print_duration<W: Write>(
&self,
duration: &SignedDuration,
wtr: W,
) -> Result<(), Error> {
self.p.print_duration(duration, wtr)
}
}
#[cfg(test)]
mod tests {
use alloc::string::ToString;
use crate::Unit;
use super::*;
// This test ensures that strings like `2024-07-15+02` fail to parse.
// Note though that `2024-07-15[America/New_York]` is okay!
#[test]
fn err_temporal_datetime_offset() {
insta::assert_snapshot!(
DateTimeParser::new().parse_date(b"2024-07-15+02").unwrap_err(),
@r###"parsed value '2024-07-15', but unparsed input "+02" remains (expected no unparsed input)"###,
);
insta::assert_snapshot!(
DateTimeParser::new().parse_date(b"2024-07-15-02").unwrap_err(),
@r###"parsed value '2024-07-15', but unparsed input "-02" remains (expected no unparsed input)"###,
);
}
#[test]
fn year_zero() {
insta::assert_snapshot!(
DateTimeParser::new().parse_date("0000-01-01").unwrap(),
@"0000-01-01",
);
insta::assert_snapshot!(
DateTimeParser::new().parse_date("+000000-01-01").unwrap(),
@"0000-01-01",
);
insta::assert_snapshot!(
DateTimeParser::new().parse_date("-000000-01-01").unwrap_err(),
@r###"failed to parse year in date "-000000-01-01": year zero must be written without a sign or a positive sign, but not a negative sign"###,
);
}
// Regression test for: https://github.com/BurntSushi/jiff/issues/59
#[test]
fn fractional_duration_roundtrip() {
let span1: Span = "Pt843517081,1H".parse().unwrap();
let span2: Span = span1.to_string().parse().unwrap();
assert_eq!(
span1.total(Unit::Hour).unwrap(),
span2.total(Unit::Hour).unwrap()
);
}
}