jiff/
signed_duration.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
use core::time::Duration;

use crate::{
    civil::{Date, DateTime, Time},
    error::{err, ErrorContext},
    fmt::{friendly, temporal},
    tz::Offset,
    util::{escape, rangeint::TryRFrom, t},
    Error, RoundMode, Timestamp, Unit, Zoned,
};

#[cfg(not(feature = "std"))]
use crate::util::libm::Float;

/// A signed duration of time represented as a 96-bit integer of nanoseconds.
///
/// Each duration is made up of a 64-bit integer of whole seconds and a
/// 32-bit integer of fractional nanoseconds less than 1 whole second. Unlike
/// [`std::time::Duration`], this duration is signed. The sign applies
/// to the entire duration. That is, either _both_ the seconds and the
/// fractional nanoseconds are negative or _neither_ are. Stated differently,
/// it is guaranteed that the signs of [`SignedDuration::as_secs`] and
/// [`SignedDuration::subsec_nanos`] are always the same, or one component is
/// zero. (For example, `-1 seconds` and `0 nanoseconds`, or `0 seconds` and
/// `-1 nanoseconds`.)
///
/// # Parsing and printing
///
/// Like the [`Span`](crate::Span) type, the `SignedDuration` type
/// provides convenient trait implementations of [`std::str::FromStr`] and
/// [`std::fmt::Display`]:
///
/// ```
/// use jiff::SignedDuration;
///
/// let duration: SignedDuration = "PT2h30m".parse()?;
/// assert_eq!(duration.to_string(), "PT2H30M");
///
/// // Or use the "friendly" format by invoking the alternate:
/// assert_eq!(format!("{duration:#}"), "2h 30m");
///
/// // Parsing automatically supports both the ISO 8601 and "friendly" formats:
/// let duration: SignedDuration = "2h 30m".parse()?;
/// assert_eq!(duration, SignedDuration::new(2 * 60 * 60 + 30 * 60, 0));
/// let duration: SignedDuration = "2 hours, 30 minutes".parse()?;
/// assert_eq!(duration, SignedDuration::new(2 * 60 * 60 + 30 * 60, 0));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Unlike the `Span` type, though, only uniform units are supported. This
/// means that ISO 8601 durations with non-zero units of days or greater cannot
/// be parsed directly into a `SignedDuration`:
///
/// ```
/// use jiff::SignedDuration;
///
/// assert_eq!(
///     "P1d".parse::<SignedDuration>().unwrap_err().to_string(),
///     "failed to parse ISO 8601 duration string into `SignedDuration`: \
///      parsing ISO 8601 duration into SignedDuration requires that the \
///      duration contain a time component and no components of days or \
///      greater",
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// To parse such durations, one should first parse them into a `Span` and
/// then convert them to a `SignedDuration` by providing a relative date:
///
/// ```
/// use jiff::{civil::date, SignedDuration, Span};
///
/// let span: Span = "P1d".parse()?;
/// let relative = date(2024, 11, 3).in_tz("US/Eastern")?;
/// let duration = span.to_duration(&relative)?;
/// // This example also motivates *why* a relative date
/// // is required. Not all days are the same length!
/// assert_eq!(duration.to_string(), "PT25H");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// The format supported is a variation (nearly a subset) of the duration
/// format specified in [ISO 8601] _and_ a Jiff-specific "friendly" format.
/// Here are more examples:
///
/// ```
/// use jiff::SignedDuration;
///
/// let durations = [
///     // ISO 8601
///     ("PT2H30M", SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)),
///     ("PT2.5h", SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)),
///     ("PT1m", SignedDuration::from_mins(1)),
///     ("PT1.5m", SignedDuration::from_secs(90)),
///     ("PT0.0021s", SignedDuration::new(0, 2_100_000)),
///     ("PT0s", SignedDuration::ZERO),
///     ("PT0.000000001s", SignedDuration::from_nanos(1)),
///     // Jiff's "friendly" format
///     ("2h30m", SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)),
///     ("2 hrs 30 mins", SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)),
///     ("2 hours 30 minutes", SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)),
///     ("2.5h", SignedDuration::from_secs(2 * 60 * 60 + 30 * 60)),
///     ("1m", SignedDuration::from_mins(1)),
///     ("1.5m", SignedDuration::from_secs(90)),
///     ("0.0021s", SignedDuration::new(0, 2_100_000)),
///     ("0s", SignedDuration::ZERO),
///     ("0.000000001s", SignedDuration::from_nanos(1)),
/// ];
/// for (string, duration) in durations {
///     let parsed: SignedDuration = string.parse()?;
///     assert_eq!(duration, parsed, "result of parsing {string:?}");
/// }
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// For more details, see the [`fmt::temporal`](temporal) and
/// [`fmt::friendly`](friendly) modules.
///
/// [ISO 8601]: https://www.iso.org/iso-8601-date-and-time-format.html
///
/// # API design
///
/// A `SignedDuration` is, as much as is possible, a replica of the
/// `std::time::Duration` API. While there are probably some quirks in the API
/// of `std::time::Duration` that could have been fixed here, it is probably
/// more important that it behave "exactly like a `std::time::Duration` but
/// with a sign." That is, this type mirrors the parallels between signed and
/// unsigned integer types.
///
/// While the goal was to match the `std::time::Duration` API as much as
/// possible, there are some differences worth highlighting:
///
/// * As stated, a `SignedDuration` has a sign. Therefore, it uses `i64` and
/// `i32` instead of `u64` and `u32` to represent its 96-bit integer.
/// * Because it's signed, the range of possible values is different. For
/// example, a `SignedDuration::MAX` has a whole number of seconds equivalent
/// to `i64::MAX`, which is less than `u64::MAX`.
/// * There are some additional APIs that don't make sense on an unsigned
/// duration, like [`SignedDuration::abs`] and [`SignedDuration::checked_neg`].
/// * A [`SignedDuration::system_until`] routine is provided as a replacement
/// for [`std::time::SystemTime::duration_since`], but with signed durations.
/// * Constructors and getters for units of hours and minutes are provided,
/// where as these routines are unstable in the standard library.
/// * Unlike the standard library, this type implements the `std::fmt::Display`
/// and `std::str::FromStr` traits via the ISO 8601 duration format, just
/// like the [`Span`](crate::Span) type does. Also like `Span`, the ISO
/// 8601 duration format is used to implement the serde `Serialize` and
/// `Deserialize` traits when the `serde` crate feature is enabled.
/// * The `std::fmt::Debug` trait implementation is a bit different. If you
/// have a problem with it, please file an issue.
/// * At present, there is no `SignedDuration::abs_diff` since there are some
/// API design questions. If you want it, please file an issue.
///
/// # When should I use `SignedDuration` versus [`Span`](crate::Span)?
///
/// Jiff's primary duration type is `Span`. The key differences between it and
/// `SignedDuration` are:
///
/// * A `Span` keeps track of each individual unit separately. That is, even
/// though `1 hour 60 minutes` and `2 hours` are equivalent durations
/// of time, representing each as a `Span` corresponds to two distinct values
/// in memory. And serializing them to the ISO 8601 duration format will also
/// preserve the units, for example, `PT1h60m` and `PT2h`.
/// * A `Span` supports non-uniform units like days, weeks, months and years.
/// Since not all days, weeks, months and years have the same length, they
/// cannot be represented by a `SignedDuration`. In some cases, it may be
/// appropriate, for example, to assume that all days are 24 hours long. But
/// since Jiff sometimes assumes all days are 24 hours (for civil time) and
/// sometimes doesn't (like for `Zoned` when respecting time zones), it would
/// be inappropriate to bake one of those assumptions into a `SignedDuration`.
/// * A `SignedDuration` is a much smaller type than a `Span`. Specifically,
/// it's a 96-bit integer. In contrast, a `Span` is much larger since it needs
/// to track each individual unit separately.
///
/// Those differences in turn motivate some approximate reasoning for when to
/// use `Span` and when to use `SignedDuration`:
///
/// * If you don't care about keeping track of individual units separately or
/// don't need the sophisticated rounding options available on a `Span`, it
/// might be simpler and faster to use a `SignedDuration`.
/// * If you specifically need performance on arithmetic operations involving
/// datetimes and durations, even if it's not as convenient or correct, then it
/// might make sense to use a `SignedDuration`.
/// * If you need to perform arithmetic using a `std::time::Duration` and
/// otherwise don't need the functionality of a `Span`, it might make sense
/// to first convert the `std::time::Duration` to a `SignedDuration`, and then
/// use one of the corresponding operations defined for `SignedDuration` on
/// the datetime types. (They all support it.)
///
/// In general, a `Span` provides more functionality and is overall more
/// flexible. A `Span` can also deserialize all forms of ISO 8601 durations
/// (as long as they're within Jiff's limits), including durations with units
/// of years, months, weeks and days. A `SignedDuration`, by contrast, only
/// supports units up to and including hours.
///
/// # Integration with datetime types
///
/// All datetime types that support arithmetic using [`Span`](crate::Span) also
/// support arithmetic using `SignedDuration` (and [`std::time::Duration`]).
/// For example, here's how to add an absolute duration to a [`Timestamp`]:
///
/// ```
/// use jiff::{SignedDuration, Timestamp};
///
/// let ts1 = Timestamp::from_second(1_123_456_789)?;
/// assert_eq!(ts1.to_string(), "2005-08-07T23:19:49Z");
///
/// let duration = SignedDuration::new(59, 999_999_999);
/// // Timestamp::checked_add is polymorphic! It can accept a
/// // span or a duration.
/// let ts2 = ts1.checked_add(duration)?;
/// assert_eq!(ts2.to_string(), "2005-08-07T23:20:48.999999999Z");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// The same API pattern works with [`Zoned`], [`DateTime`], [`Date`] and
/// [`Time`].
///
/// # Interaction with daylight saving time and time zone transitions
///
/// A `SignedDuration` always corresponds to a specific number of nanoseconds.
/// Since a [`Zoned`] is always a precise instant in time, adding a `SignedDuration`
/// to a `Zoned` always behaves by adding the nanoseconds from the duration to
/// the timestamp inside of `Zoned`. Consider `2024-03-10` in `US/Eastern`.
/// At `02:00:00`, daylight saving time came into effect, switching the UTC
/// offset for the region from `-05` to `-04`. This has the effect of skipping
/// an hour on the clocks:
///
/// ```
/// use jiff::{civil::date, SignedDuration};
///
/// let zdt = date(2024, 3, 10).at(1, 59, 0, 0).in_tz("US/Eastern")?;
/// assert_eq!(
///     zdt.checked_add(SignedDuration::from_hours(1))?,
///     // Time on the clock skipped an hour, but in this time
///     // zone, 03:59 is actually precisely 1 hour later than
///     // 01:59.
///     date(2024, 3, 10).at(3, 59, 0, 0).in_tz("US/Eastern")?,
/// );
/// // The same would apply if you used a `Span`:
/// assert_eq!(
///     zdt.checked_add(jiff::Span::new().hours(1))?,
///     // Time on the clock skipped an hour, but in this time
///     // zone, 03:59 is actually precisely 1 hour later than
///     // 01:59.
///     date(2024, 3, 10).at(3, 59, 0, 0).in_tz("US/Eastern")?,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Where time zones might have a more interesting effect is in the definition
/// of the "day" itself. If, for example, you encode the notion that a day is
/// always 24 hours into your arithmetic, you might get unexpected results.
/// For example, let's say you want to find the datetime precisely one week
/// after `2024-03-08T17:00` in the `US/Eastern` time zone. You might be
/// tempted to just ask for the time that is `7 * 24` hours later:
///
/// ```
/// use jiff::{civil::date, SignedDuration};
///
/// let zdt = date(2024, 3, 8).at(17, 0, 0, 0).in_tz("US/Eastern")?;
/// assert_eq!(
///     zdt.checked_add(SignedDuration::from_hours(7 * 24))?,
///     date(2024, 3, 15).at(18, 0, 0, 0).in_tz("US/Eastern")?,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Notice that you get `18:00` and not `17:00`! That's because, as shown
/// in the previous example, `2024-03-10` was only 23 hours long. That in turn
/// implies that the week starting from `2024-03-08` is only `7 * 24 - 1` hours
/// long. This can be tricky to get correct with absolute durations like
/// `SignedDuration`, but a `Span` will handle this for you automatically:
///
/// ```
/// use jiff::{civil::date, ToSpan};
///
/// let zdt = date(2024, 3, 8).at(17, 0, 0, 0).in_tz("US/Eastern")?;
/// assert_eq!(
///     zdt.checked_add(1.week())?,
///     // The expected time!
///     date(2024, 3, 15).at(17, 0, 0, 0).in_tz("US/Eastern")?,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// A `Span` achieves this by keeping track of individual units. Unlike a
/// `SignedDuration`, it is not just a simple count of nanoseconds. It is a
/// "bag" of individual units, and the arithmetic operations defined on a
/// `Span` for `Zoned` know how to interpret "day" in a particular time zone
/// at a particular instant in time.
///
/// With that said, the above does not mean that using a `SignedDuration` is
/// always wrong. For example, if you're dealing with units of hours or lower,
/// then all such units are uniform and so you'll always get the same results
/// as with a `Span`. And using a `SignedDuration` can sometimes be simpler
/// or faster.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Default)]
pub struct SignedDuration {
    secs: i64,
    nanos: i32,
}

const NANOS_PER_SEC: i32 = 1_000_000_000;
const NANOS_PER_MILLI: i32 = 1_000_000;
const NANOS_PER_MICRO: i32 = 1_000;
const MILLIS_PER_SEC: i64 = 1_000;
const MICROS_PER_SEC: i64 = 1_000_000;
const SECS_PER_MINUTE: i64 = 60;
const MINS_PER_HOUR: i64 = 60;

impl SignedDuration {
    /// A duration of zero time.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::ZERO;
    /// assert!(duration.is_zero());
    /// assert_eq!(duration.as_secs(), 0);
    /// assert_eq!(duration.subsec_nanos(), 0);
    /// ```
    pub const ZERO: SignedDuration = SignedDuration { secs: 0, nanos: 0 };

    /// The minimum possible duration. Or the "most negative" duration.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::MIN;
    /// assert_eq!(duration.as_secs(), i64::MIN);
    /// assert_eq!(duration.subsec_nanos(), -999_999_999);
    /// ```
    pub const MIN: SignedDuration =
        SignedDuration { secs: i64::MIN, nanos: -(NANOS_PER_SEC - 1) };

    /// The maximum possible duration.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::MAX;
    /// assert_eq!(duration.as_secs(), i64::MAX);
    /// assert_eq!(duration.subsec_nanos(), 999_999_999);
    /// ```
    pub const MAX: SignedDuration =
        SignedDuration { secs: i64::MAX, nanos: NANOS_PER_SEC - 1 };

    /// Creates a new `SignedDuration` from the given number of whole seconds
    /// and additional nanoseconds.
    ///
    /// If the absolute value of the nanoseconds is greater than or equal to
    /// 1 second, then the excess balances into the number of whole seconds.
    ///
    /// # Panics
    ///
    /// When the absolute value of the nanoseconds is greater than or equal
    /// to 1 second and the excess that carries over to the number of whole
    /// seconds overflows `i64`.
    ///
    /// This never panics when `nanos` is less than `1_000_000_000`.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 0);
    /// assert_eq!(duration.as_secs(), 12);
    /// assert_eq!(duration.subsec_nanos(), 0);
    ///
    /// let duration = SignedDuration::new(12, -1);
    /// assert_eq!(duration.as_secs(), 11);
    /// assert_eq!(duration.subsec_nanos(), 999_999_999);
    ///
    /// let duration = SignedDuration::new(12, 1_000_000_000);
    /// assert_eq!(duration.as_secs(), 13);
    /// assert_eq!(duration.subsec_nanos(), 0);
    /// ```
    #[inline]
    pub const fn new(mut secs: i64, mut nanos: i32) -> SignedDuration {
        // When |nanos| exceeds 1 second, we balance the excess up to seconds.
        if !(-NANOS_PER_SEC < nanos && nanos < NANOS_PER_SEC) {
            // Never wraps or panics because NANOS_PER_SEC!={0,-1}.
            let addsecs = nanos / NANOS_PER_SEC;
            secs = match secs.checked_add(addsecs as i64) {
                Some(secs) => secs,
                None => panic!(
                    "nanoseconds overflowed seconds in SignedDuration::new"
                ),
            };
            // Never wraps or panics because NANOS_PER_SEC!={0,-1}.
            nanos = nanos % NANOS_PER_SEC;
        }
        // At this point, we're done if either unit is zero or if they have the
        // same sign.
        if nanos == 0 || secs == 0 || secs.signum() == (nanos.signum() as i64)
        {
            return SignedDuration::new_unchecked(secs, nanos);
        }
        // Otherwise, the only work we have to do is to balance negative nanos
        // into positive seconds, or positive nanos into negative seconds.
        if secs < 0 {
            debug_assert!(nanos > 0);
            // Never wraps because adding +1 to a negative i64 never overflows.
            //
            // MSRV(1.79): Consider using `unchecked_add` here.
            secs += 1;
            // Never wraps because subtracting +1_000_000_000 from a positive
            // i32 never overflows.
            //
            // MSRV(1.79): Consider using `unchecked_sub` here.
            nanos -= NANOS_PER_SEC;
        } else {
            debug_assert!(secs > 0);
            debug_assert!(nanos < 0);
            // Never wraps because subtracting +1 from a positive i64 never
            // overflows.
            //
            // MSRV(1.79): Consider using `unchecked_add` here.
            secs -= 1;
            // Never wraps because adding +1_000_000_000 to a negative i32
            // never overflows.
            //
            // MSRV(1.79): Consider using `unchecked_add` here.
            nanos += NANOS_PER_SEC;
        }
        SignedDuration::new_unchecked(secs, nanos)
    }

    /// Creates a new signed duration without handling nanosecond overflow.
    ///
    /// This might produce tighter code in some cases.
    ///
    /// # Panics
    ///
    /// When `|nanos|` is greater than or equal to 1 second.
    #[inline]
    pub(crate) const fn new_without_nano_overflow(
        secs: i64,
        nanos: i32,
    ) -> SignedDuration {
        assert!(nanos <= 999_999_999);
        assert!(nanos >= -999_999_999);
        SignedDuration::new_unchecked(secs, nanos)
    }

    /// Creates a new signed duration without handling nanosecond overflow.
    ///
    /// This might produce tighter code in some cases.
    ///
    /// In debug mode only, when `|nanos|` is greater than or equal to 1
    /// second.
    ///
    /// This is not exported so that code outside this module can rely on
    /// `|nanos|` being less than a second for purposes of memory safety.
    #[inline]
    const fn new_unchecked(secs: i64, nanos: i32) -> SignedDuration {
        debug_assert!(nanos <= 999_999_999);
        debug_assert!(nanos >= -999_999_999);
        SignedDuration { secs, nanos }
    }

    /// Creates a new `SignedDuration` from the given number of whole seconds.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::from_secs(12);
    /// assert_eq!(duration.as_secs(), 12);
    /// assert_eq!(duration.subsec_nanos(), 0);
    /// ```
    #[inline]
    pub const fn from_secs(secs: i64) -> SignedDuration {
        SignedDuration::new_unchecked(secs, 0)
    }

    /// Creates a new `SignedDuration` from the given number of whole
    /// milliseconds.
    ///
    /// Note that since this accepts an `i64`, this method cannot be used
    /// to construct the full range of possible signed duration values. In
    /// particular, [`SignedDuration::as_millis`] returns an `i128`, and this
    /// may be a value that would otherwise overflow an `i64`.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::from_millis(12_456);
    /// assert_eq!(duration.as_secs(), 12);
    /// assert_eq!(duration.subsec_nanos(), 456_000_000);
    ///
    /// let duration = SignedDuration::from_millis(-12_456);
    /// assert_eq!(duration.as_secs(), -12);
    /// assert_eq!(duration.subsec_nanos(), -456_000_000);
    /// ```
    #[inline]
    pub const fn from_millis(millis: i64) -> SignedDuration {
        // OK because MILLIS_PER_SEC!={-1,0}.
        let secs = millis / MILLIS_PER_SEC;
        // OK because MILLIS_PER_SEC!={-1,0} and because
        // millis % MILLIS_PER_SEC can be at most 999, and 999 * 1_000_000
        // never overflows i32.
        let nanos = (millis % MILLIS_PER_SEC) as i32 * NANOS_PER_MILLI;
        SignedDuration::new_unchecked(secs, nanos)
    }

    /// Creates a new `SignedDuration` from the given number of whole
    /// microseconds.
    ///
    /// Note that since this accepts an `i64`, this method cannot be used
    /// to construct the full range of possible signed duration values. In
    /// particular, [`SignedDuration::as_micros`] returns an `i128`, and this
    /// may be a value that would otherwise overflow an `i64`.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::from_micros(12_000_456);
    /// assert_eq!(duration.as_secs(), 12);
    /// assert_eq!(duration.subsec_nanos(), 456_000);
    ///
    /// let duration = SignedDuration::from_micros(-12_000_456);
    /// assert_eq!(duration.as_secs(), -12);
    /// assert_eq!(duration.subsec_nanos(), -456_000);
    /// ```
    #[inline]
    pub const fn from_micros(micros: i64) -> SignedDuration {
        // OK because MICROS_PER_SEC!={-1,0}.
        let secs = micros / MICROS_PER_SEC;
        // OK because MICROS_PER_SEC!={-1,0} and because
        // millis % MICROS_PER_SEC can be at most 999, and 999 * 1_000_000
        // never overflows i32.
        let nanos = (micros % MICROS_PER_SEC) as i32 * NANOS_PER_MICRO;
        SignedDuration::new_unchecked(secs, nanos)
    }

    /// Creates a new `SignedDuration` from the given number of whole
    /// nanoseconds.
    ///
    /// Note that since this accepts an `i64`, this method cannot be used
    /// to construct the full range of possible signed duration values. In
    /// particular, [`SignedDuration::as_nanos`] returns an `i128`, which may
    /// be a value that would otherwise overflow an `i64`.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::from_nanos(12_000_000_456);
    /// assert_eq!(duration.as_secs(), 12);
    /// assert_eq!(duration.subsec_nanos(), 456);
    ///
    /// let duration = SignedDuration::from_nanos(-12_000_000_456);
    /// assert_eq!(duration.as_secs(), -12);
    /// assert_eq!(duration.subsec_nanos(), -456);
    /// ```
    #[inline]
    pub const fn from_nanos(nanos: i64) -> SignedDuration {
        // OK because NANOS_PER_SEC!={-1,0}.
        let secs = nanos / (NANOS_PER_SEC as i64);
        // OK because NANOS_PER_SEC!={-1,0}.
        let nanos = (nanos % (NANOS_PER_SEC as i64)) as i32;
        SignedDuration::new_unchecked(secs, nanos)
    }

    /// Creates a new `SignedDuration` from the given number of hours. Every
    /// hour is exactly `3,600` seconds.
    ///
    /// # Panics
    ///
    /// Panics if the number of hours, after being converted to nanoseconds,
    /// overflows the minimum or maximum `SignedDuration` values.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::from_hours(24);
    /// assert_eq!(duration.as_secs(), 86_400);
    /// assert_eq!(duration.subsec_nanos(), 0);
    ///
    /// let duration = SignedDuration::from_hours(-24);
    /// assert_eq!(duration.as_secs(), -86_400);
    /// assert_eq!(duration.subsec_nanos(), 0);
    /// ```
    #[inline]
    pub const fn from_hours(hours: i64) -> SignedDuration {
        // OK because (SECS_PER_MINUTE*MINS_PER_HOUR)!={-1,0}.
        const MIN_HOUR: i64 = i64::MIN / (SECS_PER_MINUTE * MINS_PER_HOUR);
        // OK because (SECS_PER_MINUTE*MINS_PER_HOUR)!={-1,0}.
        const MAX_HOUR: i64 = i64::MAX / (SECS_PER_MINUTE * MINS_PER_HOUR);
        // OK because (SECS_PER_MINUTE*MINS_PER_HOUR)!={-1,0}.
        if hours < MIN_HOUR {
            panic!("hours overflowed minimum number of SignedDuration seconds")
        }
        // OK because (SECS_PER_MINUTE*MINS_PER_HOUR)!={-1,0}.
        if hours > MAX_HOUR {
            panic!("hours overflowed maximum number of SignedDuration seconds")
        }
        SignedDuration::from_secs(hours * MINS_PER_HOUR * SECS_PER_MINUTE)
    }

    /// Creates a new `SignedDuration` from the given number of minutes. Every
    /// minute is exactly `60` seconds.
    ///
    /// # Panics
    ///
    /// Panics if the number of minutes, after being converted to nanoseconds,
    /// overflows the minimum or maximum `SignedDuration` values.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::from_mins(1_440);
    /// assert_eq!(duration.as_secs(), 86_400);
    /// assert_eq!(duration.subsec_nanos(), 0);
    ///
    /// let duration = SignedDuration::from_mins(-1_440);
    /// assert_eq!(duration.as_secs(), -86_400);
    /// assert_eq!(duration.subsec_nanos(), 0);
    /// ```
    #[inline]
    pub const fn from_mins(minutes: i64) -> SignedDuration {
        // OK because SECS_PER_MINUTE!={-1,0}.
        const MIN_MINUTE: i64 = i64::MIN / SECS_PER_MINUTE;
        // OK because SECS_PER_MINUTE!={-1,0}.
        const MAX_MINUTE: i64 = i64::MAX / SECS_PER_MINUTE;
        // OK because SECS_PER_MINUTE!={-1,0}.
        if minutes < MIN_MINUTE {
            panic!(
                "minutes overflowed minimum number of SignedDuration seconds"
            )
        }
        // OK because SECS_PER_MINUTE!={-1,0}.
        if minutes > MAX_MINUTE {
            panic!(
                "minutes overflowed maximum number of SignedDuration seconds"
            )
        }
        SignedDuration::from_secs(minutes * SECS_PER_MINUTE)
    }

    /// Converts the given timestamp into a signed duration.
    ///
    /// This isn't exported because it's not clear that it makes semantic
    /// sense, since it somewhat encodes the assumption that the "desired"
    /// duration is relative to the Unix epoch. Which is... probably fine?
    /// But I'm not sure.
    ///
    /// But the point of this is to make the conversion a little cheaper.
    /// Namely, since a `Timestamp` internally uses same representation as a
    /// `SignedDuration` with the same guarantees (except with smaller limits),
    /// we can avoid a fair bit of case analysis done in `SignedDuration::new`.
    pub(crate) fn from_timestamp(timestamp: Timestamp) -> SignedDuration {
        SignedDuration::new_unchecked(
            timestamp.as_second(),
            timestamp.subsec_nanosecond(),
        )
    }

    /// Returns true if this duration spans no time.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// assert!(SignedDuration::ZERO.is_zero());
    /// assert!(!SignedDuration::MIN.is_zero());
    /// assert!(!SignedDuration::MAX.is_zero());
    /// ```
    #[inline]
    pub const fn is_zero(&self) -> bool {
        self.secs == 0 && self.nanos == 0
    }

    /// Returns the number of whole seconds in this duration.
    ///
    /// The value returned is negative when the duration is negative.
    ///
    /// This does not include any fractional component corresponding to units
    /// less than a second. To access those, use one of the `subsec` methods
    /// such as [`SignedDuration::subsec_nanos`].
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 999_999_999);
    /// assert_eq!(duration.as_secs(), 12);
    ///
    /// let duration = SignedDuration::new(-12, -999_999_999);
    /// assert_eq!(duration.as_secs(), -12);
    /// ```
    #[inline]
    pub const fn as_secs(&self) -> i64 {
        self.secs
    }

    /// Returns the fractional part of this duration in whole milliseconds.
    ///
    /// The value returned is negative when the duration is negative. It is
    /// guaranteed that the range of the value returned is in the inclusive
    /// range `-999..=999`.
    ///
    /// To get the length of the total duration represented in milliseconds,
    /// use [`SignedDuration::as_millis`].
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 123_456_789);
    /// assert_eq!(duration.subsec_millis(), 123);
    ///
    /// let duration = SignedDuration::new(-12, -123_456_789);
    /// assert_eq!(duration.subsec_millis(), -123);
    /// ```
    #[inline]
    pub const fn subsec_millis(&self) -> i32 {
        // OK because NANOS_PER_MILLI!={-1,0}.
        self.nanos / NANOS_PER_MILLI
    }

    /// Returns the fractional part of this duration in whole microseconds.
    ///
    /// The value returned is negative when the duration is negative. It is
    /// guaranteed that the range of the value returned is in the inclusive
    /// range `-999_999..=999_999`.
    ///
    /// To get the length of the total duration represented in microseconds,
    /// use [`SignedDuration::as_micros`].
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 123_456_789);
    /// assert_eq!(duration.subsec_micros(), 123_456);
    ///
    /// let duration = SignedDuration::new(-12, -123_456_789);
    /// assert_eq!(duration.subsec_micros(), -123_456);
    /// ```
    #[inline]
    pub const fn subsec_micros(&self) -> i32 {
        // OK because NANOS_PER_MICRO!={-1,0}.
        self.nanos / NANOS_PER_MICRO
    }

    /// Returns the fractional part of this duration in whole nanoseconds.
    ///
    /// The value returned is negative when the duration is negative. It is
    /// guaranteed that the range of the value returned is in the inclusive
    /// range `-999_999_999..=999_999_999`.
    ///
    /// To get the length of the total duration represented in nanoseconds,
    /// use [`SignedDuration::as_nanos`].
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 123_456_789);
    /// assert_eq!(duration.subsec_nanos(), 123_456_789);
    ///
    /// let duration = SignedDuration::new(-12, -123_456_789);
    /// assert_eq!(duration.subsec_nanos(), -123_456_789);
    /// ```
    #[inline]
    pub const fn subsec_nanos(&self) -> i32 {
        self.nanos
    }

    /// Returns the total duration in units of whole milliseconds.
    ///
    /// The value returned is negative when the duration is negative.
    ///
    /// To get only the fractional component of this duration in units of
    /// whole milliseconds, use [`SignedDuration::subsec_millis`].
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 123_456_789);
    /// assert_eq!(duration.as_millis(), 12_123);
    ///
    /// let duration = SignedDuration::new(-12, -123_456_789);
    /// assert_eq!(duration.as_millis(), -12_123);
    /// ```
    #[inline]
    pub const fn as_millis(&self) -> i128 {
        // OK because 1_000 times any i64 will never overflow i128.
        let millis = (self.secs as i128) * (MILLIS_PER_SEC as i128);
        // OK because NANOS_PER_MILLI!={-1,0}.
        let subsec_millis = (self.nanos / NANOS_PER_MILLI) as i128;
        // OK because subsec_millis maxes out at 999, and adding that to
        // i64::MAX*1_000 will never overflow a i128.
        millis + subsec_millis
    }

    /// Returns the total duration in units of whole microseconds.
    ///
    /// The value returned is negative when the duration is negative.
    ///
    /// To get only the fractional component of this duration in units of
    /// whole microseconds, use [`SignedDuration::subsec_micros`].
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 123_456_789);
    /// assert_eq!(duration.as_micros(), 12_123_456);
    ///
    /// let duration = SignedDuration::new(-12, -123_456_789);
    /// assert_eq!(duration.as_micros(), -12_123_456);
    /// ```
    #[inline]
    pub const fn as_micros(&self) -> i128 {
        // OK because 1_000_000 times any i64 will never overflow i128.
        let micros = (self.secs as i128) * (MICROS_PER_SEC as i128);
        // OK because NANOS_PER_MICRO!={-1,0}.
        let subsec_micros = (self.nanos / NANOS_PER_MICRO) as i128;
        // OK because subsec_micros maxes out at 999_999, and adding that to
        // i64::MAX*1_000_000 will never overflow a i128.
        micros + subsec_micros
    }

    /// Returns the total duration in units of whole nanoseconds.
    ///
    /// The value returned is negative when the duration is negative.
    ///
    /// To get only the fractional component of this duration in units of
    /// whole nanoseconds, use [`SignedDuration::subsec_nanos`].
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 123_456_789);
    /// assert_eq!(duration.as_nanos(), 12_123_456_789);
    ///
    /// let duration = SignedDuration::new(-12, -123_456_789);
    /// assert_eq!(duration.as_nanos(), -12_123_456_789);
    /// ```
    #[inline]
    pub const fn as_nanos(&self) -> i128 {
        // OK because 1_000_000_000 times any i64 will never overflow i128.
        let nanos = (self.secs as i128) * (NANOS_PER_SEC as i128);
        // OK because subsec_nanos maxes out at 999_999_999, and adding that to
        // i64::MAX*1_000_000_000 will never overflow a i128.
        nanos + (self.nanos as i128)
    }

    // NOTE: We don't provide `abs_diff` here because we can't represent the
    // difference between all possible durations. For example,
    // `abs_diff(SignedDuration::MAX, SignedDuration::MIN)`. It therefore seems
    // like we should actually return a `std::time::Duration` here, but I'm
    // trying to be conservative when divering from std.

    /// Add two signed durations together. If overflow occurs, then `None` is
    /// returned.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration1 = SignedDuration::new(12, 500_000_000);
    /// let duration2 = SignedDuration::new(0, 500_000_000);
    /// assert_eq!(
    ///     duration1.checked_add(duration2),
    ///     Some(SignedDuration::new(13, 0)),
    /// );
    ///
    /// let duration1 = SignedDuration::MAX;
    /// let duration2 = SignedDuration::new(0, 1);
    /// assert_eq!(duration1.checked_add(duration2), None);
    /// ```
    #[inline]
    pub const fn checked_add(
        self,
        rhs: SignedDuration,
    ) -> Option<SignedDuration> {
        let Some(mut secs) = self.secs.checked_add(rhs.secs) else {
            return None;
        };
        // OK because `-999_999_999 <= nanos <= 999_999_999`, and so adding
        // them together will never overflow an i32.
        let mut nanos = self.nanos + rhs.nanos;
        // The below is effectively SignedDuration::new, but with checked
        // arithmetic. My suspicion is that there is probably a better way
        // to do this. The main complexity here is that 1) `|nanos|` might
        // now exceed 1 second and 2) the signs of `secs` and `nanos` might
        // not be the same. The other difference from SignedDuration::new is
        // that we know that `-1_999_999_998 <= nanos <= 1_999_999_998` since
        // `|SignedDuration::nanos|` is guaranteed to be less than 1 second. So
        // we can skip the div and modulus operations.

        // When |nanos| exceeds 1 second, we balance the excess up to seconds.
        if nanos != 0 {
            if nanos >= NANOS_PER_SEC {
                nanos -= NANOS_PER_SEC;
                secs = match secs.checked_add(1) {
                    None => return None,
                    Some(secs) => secs,
                };
            } else if nanos <= -NANOS_PER_SEC {
                nanos += NANOS_PER_SEC;
                secs = match secs.checked_sub(1) {
                    None => return None,
                    Some(secs) => secs,
                };
            }
            if secs != 0
                && nanos != 0
                && secs.signum() != (nanos.signum() as i64)
            {
                if secs < 0 {
                    debug_assert!(nanos > 0);
                    // OK because secs<0.
                    secs += 1;
                    // OK because nanos>0.
                    nanos -= NANOS_PER_SEC;
                } else {
                    debug_assert!(secs > 0);
                    debug_assert!(nanos < 0);
                    // OK because secs>0.
                    secs -= 1;
                    // OK because nanos<0.
                    nanos += NANOS_PER_SEC;
                }
            }
        }
        Some(SignedDuration::new_unchecked(secs, nanos))
    }

    /// Add two signed durations together. If overflow occurs, then arithmetic
    /// saturates.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration1 = SignedDuration::MAX;
    /// let duration2 = SignedDuration::new(0, 1);
    /// assert_eq!(duration1.saturating_add(duration2), SignedDuration::MAX);
    ///
    /// let duration1 = SignedDuration::MIN;
    /// let duration2 = SignedDuration::new(0, -1);
    /// assert_eq!(duration1.saturating_add(duration2), SignedDuration::MIN);
    /// ```
    #[inline]
    pub const fn saturating_add(self, rhs: SignedDuration) -> SignedDuration {
        let Some(sum) = self.checked_add(rhs) else {
            return if rhs.is_negative() {
                SignedDuration::MIN
            } else {
                SignedDuration::MAX
            };
        };
        sum
    }

    /// Subtract one signed duration from another. If overflow occurs, then
    /// `None` is returned.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration1 = SignedDuration::new(12, 500_000_000);
    /// let duration2 = SignedDuration::new(0, 500_000_000);
    /// assert_eq!(
    ///     duration1.checked_sub(duration2),
    ///     Some(SignedDuration::new(12, 0)),
    /// );
    ///
    /// let duration1 = SignedDuration::MIN;
    /// let duration2 = SignedDuration::new(0, 1);
    /// assert_eq!(duration1.checked_sub(duration2), None);
    /// ```
    #[inline]
    pub const fn checked_sub(
        self,
        rhs: SignedDuration,
    ) -> Option<SignedDuration> {
        let Some(rhs) = rhs.checked_neg() else { return None };
        self.checked_add(rhs)
    }

    /// Add two signed durations together. If overflow occurs, then arithmetic
    /// saturates.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration1 = SignedDuration::MAX;
    /// let duration2 = SignedDuration::new(0, -1);
    /// assert_eq!(duration1.saturating_sub(duration2), SignedDuration::MAX);
    ///
    /// let duration1 = SignedDuration::MIN;
    /// let duration2 = SignedDuration::new(0, 1);
    /// assert_eq!(duration1.saturating_sub(duration2), SignedDuration::MIN);
    /// ```
    #[inline]
    pub const fn saturating_sub(self, rhs: SignedDuration) -> SignedDuration {
        let Some(diff) = self.checked_sub(rhs) else {
            return if rhs.is_positive() {
                SignedDuration::MIN
            } else {
                SignedDuration::MAX
            };
        };
        diff
    }

    /// Multiply this signed duration by an integer. If the multiplication
    /// overflows, then `None` is returned.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 500_000_000);
    /// assert_eq!(
    ///     duration.checked_mul(2),
    ///     Some(SignedDuration::new(25, 0)),
    /// );
    /// ```
    #[inline]
    pub const fn checked_mul(self, rhs: i32) -> Option<SignedDuration> {
        let rhs = rhs as i64;
        // Multiplying any two i32 values never overflows an i64.
        let nanos = (self.nanos as i64) * rhs;
        // OK since NANOS_PER_SEC!={-1,0}.
        let addsecs = nanos / (NANOS_PER_SEC as i64);
        // OK since NANOS_PER_SEC!={-1,0}.
        let nanos = (nanos % (NANOS_PER_SEC as i64)) as i32;
        let Some(secs) = self.secs.checked_mul(rhs) else { return None };
        let Some(secs) = secs.checked_add(addsecs) else { return None };
        Some(SignedDuration::new_unchecked(secs, nanos))
    }

    /// Multiply this signed duration by an integer. If the multiplication
    /// overflows, then the result saturates to either the minimum or maximum
    /// duration depending on the sign of the product.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(i64::MAX, 0);
    /// assert_eq!(duration.saturating_mul(2), SignedDuration::MAX);
    /// assert_eq!(duration.saturating_mul(-2), SignedDuration::MIN);
    ///
    /// let duration = SignedDuration::new(i64::MIN, 0);
    /// assert_eq!(duration.saturating_mul(2), SignedDuration::MIN);
    /// assert_eq!(duration.saturating_mul(-2), SignedDuration::MAX);
    /// ```
    #[inline]
    pub const fn saturating_mul(self, rhs: i32) -> SignedDuration {
        let Some(product) = self.checked_mul(rhs) else {
            let sign = (self.signum() as i64) * (rhs as i64).signum();
            return if sign.is_negative() {
                SignedDuration::MIN
            } else {
                SignedDuration::MAX
            };
        };
        product
    }

    /// Divide this duration by an integer. If the division overflows, then
    /// `None` is returned.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 500_000_000);
    /// assert_eq!(
    ///     duration.checked_div(2),
    ///     Some(SignedDuration::new(6, 250_000_000)),
    /// );
    /// assert_eq!(
    ///     duration.checked_div(-2),
    ///     Some(SignedDuration::new(-6, -250_000_000)),
    /// );
    ///
    /// let duration = SignedDuration::new(-12, -500_000_000);
    /// assert_eq!(
    ///     duration.checked_div(2),
    ///     Some(SignedDuration::new(-6, -250_000_000)),
    /// );
    /// assert_eq!(
    ///     duration.checked_div(-2),
    ///     Some(SignedDuration::new(6, 250_000_000)),
    /// );
    /// ```
    #[inline]
    pub const fn checked_div(self, rhs: i32) -> Option<SignedDuration> {
        if rhs == 0 || (self.secs == i64::MIN && rhs == -1) {
            return None;
        }
        // OK since rhs!={-1,0}.
        let secs = self.secs / (rhs as i64);
        // OK since rhs!={-1,0}.
        let addsecs = self.secs % (rhs as i64);
        // OK since rhs!=0 and self.nanos>i32::MIN.
        let mut nanos = self.nanos / rhs;
        // OK since rhs!=0 and self.nanos>i32::MIN.
        let addnanos = self.nanos % rhs;
        let leftover_nanos =
            (addsecs * (NANOS_PER_SEC as i64)) + (addnanos as i64);
        nanos += (leftover_nanos / (rhs as i64)) as i32;
        debug_assert!(nanos < NANOS_PER_SEC);
        Some(SignedDuration::new_unchecked(secs, nanos))
    }

    /// Returns the number of seconds, with a possible fractional nanosecond
    /// component, represented by this signed duration as a 64-bit float.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 123_456_789);
    /// assert_eq!(duration.as_secs_f64(), 12.123456789);
    ///
    /// let duration = SignedDuration::new(-12, -123_456_789);
    /// assert_eq!(duration.as_secs_f64(), -12.123456789);
    /// ```
    #[inline]
    pub fn as_secs_f64(&self) -> f64 {
        (self.secs as f64) + ((self.nanos as f64) / (NANOS_PER_SEC as f64))
    }

    /// Returns the number of seconds, with a possible fractional nanosecond
    /// component, represented by this signed duration as a 32-bit float.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 123_456_789);
    /// assert_eq!(duration.as_secs_f32(), 12.123456789);
    ///
    /// let duration = SignedDuration::new(-12, -123_456_789);
    /// assert_eq!(duration.as_secs_f32(), -12.123456789);
    /// ```
    #[inline]
    pub fn as_secs_f32(&self) -> f32 {
        (self.secs as f32) + ((self.nanos as f32) / (NANOS_PER_SEC as f32))
    }

    /// Returns the number of milliseconds, with a possible fractional
    /// nanosecond component, represented by this signed duration as a 64-bit
    /// float.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 123_456_789);
    /// assert_eq!(duration.as_millis_f64(), 12123.456789);
    ///
    /// let duration = SignedDuration::new(-12, -123_456_789);
    /// assert_eq!(duration.as_millis_f64(), -12123.456789);
    /// ```
    #[inline]
    pub fn as_millis_f64(&self) -> f64 {
        ((self.secs as f64) * (MILLIS_PER_SEC as f64))
            + ((self.nanos as f64) / (NANOS_PER_MILLI as f64))
    }

    /// Returns the number of milliseconds, with a possible fractional
    /// nanosecond component, represented by this signed duration as a 32-bit
    /// float.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 123_456_789);
    /// assert_eq!(duration.as_millis_f32(), 12123.456789);
    ///
    /// let duration = SignedDuration::new(-12, -123_456_789);
    /// assert_eq!(duration.as_millis_f32(), -12123.456789);
    /// ```
    #[inline]
    pub fn as_millis_f32(&self) -> f32 {
        ((self.secs as f32) * (MILLIS_PER_SEC as f32))
            + ((self.nanos as f32) / (NANOS_PER_MILLI as f32))
    }

    /// Returns a signed duration corresponding to the number of seconds
    /// represented as a 64-bit float. The number given may have a fractional
    /// nanosecond component.
    ///
    /// # Panics
    ///
    /// If the given float overflows the minimum or maximum signed duration
    /// values, then this panics.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::from_secs_f64(12.123456789);
    /// assert_eq!(duration.as_secs(), 12);
    /// assert_eq!(duration.subsec_nanos(), 123_456_789);
    ///
    /// let duration = SignedDuration::from_secs_f64(-12.123456789);
    /// assert_eq!(duration.as_secs(), -12);
    /// assert_eq!(duration.subsec_nanos(), -123_456_789);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn from_secs_f64(secs: f64) -> SignedDuration {
        SignedDuration::try_from_secs_f64(secs)
            .expect("finite and in-bounds f64")
    }

    /// Returns a signed duration corresponding to the number of seconds
    /// represented as a 32-bit float. The number given may have a fractional
    /// nanosecond component.
    ///
    /// # Panics
    ///
    /// If the given float overflows the minimum or maximum signed duration
    /// values, then this panics.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::from_secs_f32(12.123456789);
    /// assert_eq!(duration.as_secs(), 12);
    /// // loss of precision!
    /// assert_eq!(duration.subsec_nanos(), 123_456_952);
    ///
    /// let duration = SignedDuration::from_secs_f32(-12.123456789);
    /// assert_eq!(duration.as_secs(), -12);
    /// // loss of precision!
    /// assert_eq!(duration.subsec_nanos(), -123_456_952);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn from_secs_f32(secs: f32) -> SignedDuration {
        SignedDuration::try_from_secs_f32(secs)
            .expect("finite and in-bounds f32")
    }

    /// Returns a signed duration corresponding to the number of seconds
    /// represented as a 64-bit float. The number given may have a fractional
    /// nanosecond component.
    ///
    /// If the given float overflows the minimum or maximum signed duration
    /// values, then an error is returned.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::try_from_secs_f64(12.123456789)?;
    /// assert_eq!(duration.as_secs(), 12);
    /// assert_eq!(duration.subsec_nanos(), 123_456_789);
    ///
    /// let duration = SignedDuration::try_from_secs_f64(-12.123456789)?;
    /// assert_eq!(duration.as_secs(), -12);
    /// assert_eq!(duration.subsec_nanos(), -123_456_789);
    ///
    /// assert!(SignedDuration::try_from_secs_f64(f64::NAN).is_err());
    /// assert!(SignedDuration::try_from_secs_f64(f64::INFINITY).is_err());
    /// assert!(SignedDuration::try_from_secs_f64(f64::NEG_INFINITY).is_err());
    /// assert!(SignedDuration::try_from_secs_f64(f64::MIN).is_err());
    /// assert!(SignedDuration::try_from_secs_f64(f64::MAX).is_err());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn try_from_secs_f64(secs: f64) -> Result<SignedDuration, Error> {
        if !secs.is_finite() {
            return Err(err!(
                "could not convert non-finite seconds \
                 {secs} to signed duration",
            ));
        }
        if secs < (i64::MIN as f64) {
            return Err(err!(
                "floating point seconds {secs} overflows signed duration \
                 minimum value of {:?}",
                SignedDuration::MIN,
            ));
        }
        if secs > (i64::MAX as f64) {
            return Err(err!(
                "floating point seconds {secs} overflows signed duration \
                 maximum value of {:?}",
                SignedDuration::MAX,
            ));
        }
        let nanos = (secs.fract() * (NANOS_PER_SEC as f64)).round() as i32;
        let secs = secs.trunc() as i64;
        Ok(SignedDuration::new_unchecked(secs, nanos))
    }

    /// Returns a signed duration corresponding to the number of seconds
    /// represented as a 32-bit float. The number given may have a fractional
    /// nanosecond component.
    ///
    /// If the given float overflows the minimum or maximum signed duration
    /// values, then an error is returned.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::try_from_secs_f32(12.123456789)?;
    /// assert_eq!(duration.as_secs(), 12);
    /// // loss of precision!
    /// assert_eq!(duration.subsec_nanos(), 123_456_952);
    ///
    /// let duration = SignedDuration::try_from_secs_f32(-12.123456789)?;
    /// assert_eq!(duration.as_secs(), -12);
    /// // loss of precision!
    /// assert_eq!(duration.subsec_nanos(), -123_456_952);
    ///
    /// assert!(SignedDuration::try_from_secs_f32(f32::NAN).is_err());
    /// assert!(SignedDuration::try_from_secs_f32(f32::INFINITY).is_err());
    /// assert!(SignedDuration::try_from_secs_f32(f32::NEG_INFINITY).is_err());
    /// assert!(SignedDuration::try_from_secs_f32(f32::MIN).is_err());
    /// assert!(SignedDuration::try_from_secs_f32(f32::MAX).is_err());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn try_from_secs_f32(secs: f32) -> Result<SignedDuration, Error> {
        if !secs.is_finite() {
            return Err(err!(
                "could not convert non-finite seconds \
                 {secs} to signed duration",
            ));
        }
        if secs < (i64::MIN as f32) {
            return Err(err!(
                "floating point seconds {secs} overflows signed duration \
                 minimum value of {:?}",
                SignedDuration::MIN,
            ));
        }
        if secs > (i64::MAX as f32) {
            return Err(err!(
                "floating point seconds {secs} overflows signed duration \
                 maximum value of {:?}",
                SignedDuration::MAX,
            ));
        }
        let nanos = (secs.fract() * (NANOS_PER_SEC as f32)).round() as i32;
        let secs = secs.trunc() as i64;
        Ok(SignedDuration::new_unchecked(secs, nanos))
    }

    /// Returns the result of multiplying this duration by the given 64-bit
    /// float.
    ///
    /// # Panics
    ///
    /// This panics if the result is not finite or overflows a
    /// `SignedDuration`.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 300_000_000);
    /// assert_eq!(
    ///     duration.mul_f64(2.0),
    ///     SignedDuration::new(24, 600_000_000),
    /// );
    /// assert_eq!(
    ///     duration.mul_f64(-2.0),
    ///     SignedDuration::new(-24, -600_000_000),
    /// );
    /// ```
    #[inline]
    pub fn mul_f64(self, rhs: f64) -> SignedDuration {
        SignedDuration::from_secs_f64(rhs * self.as_secs_f64())
    }

    /// Returns the result of multiplying this duration by the given 32-bit
    /// float.
    ///
    /// # Panics
    ///
    /// This panics if the result is not finite or overflows a
    /// `SignedDuration`.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 300_000_000);
    /// assert_eq!(
    ///     duration.mul_f32(2.0),
    ///     // loss of precision!
    ///     SignedDuration::new(24, 600_000_384),
    /// );
    /// assert_eq!(
    ///     duration.mul_f32(-2.0),
    ///     // loss of precision!
    ///     SignedDuration::new(-24, -600_000_384),
    /// );
    /// ```
    #[inline]
    pub fn mul_f32(self, rhs: f32) -> SignedDuration {
        SignedDuration::from_secs_f32(rhs * self.as_secs_f32())
    }

    /// Returns the result of dividing this duration by the given 64-bit
    /// float.
    ///
    /// # Panics
    ///
    /// This panics if the result is not finite or overflows a
    /// `SignedDuration`.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 300_000_000);
    /// assert_eq!(
    ///     duration.div_f64(2.0),
    ///     SignedDuration::new(6, 150_000_000),
    /// );
    /// assert_eq!(
    ///     duration.div_f64(-2.0),
    ///     SignedDuration::new(-6, -150_000_000),
    /// );
    /// ```
    #[inline]
    pub fn div_f64(self, rhs: f64) -> SignedDuration {
        SignedDuration::from_secs_f64(self.as_secs_f64() / rhs)
    }

    /// Returns the result of dividing this duration by the given 32-bit
    /// float.
    ///
    /// # Panics
    ///
    /// This panics if the result is not finite or overflows a
    /// `SignedDuration`.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 300_000_000);
    /// assert_eq!(
    ///     duration.div_f32(2.0),
    ///     // loss of precision!
    ///     SignedDuration::new(6, 150_000_096),
    /// );
    /// assert_eq!(
    ///     duration.div_f32(-2.0),
    ///     // loss of precision!
    ///     SignedDuration::new(-6, -150_000_096),
    /// );
    /// ```
    #[inline]
    pub fn div_f32(self, rhs: f32) -> SignedDuration {
        SignedDuration::from_secs_f32(self.as_secs_f32() / rhs)
    }

    /// Divides this signed duration by another signed duration and returns the
    /// corresponding 64-bit float result.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration1 = SignedDuration::new(12, 600_000_000);
    /// let duration2 = SignedDuration::new(6, 300_000_000);
    /// assert_eq!(duration1.div_duration_f64(duration2), 2.0);
    ///
    /// let duration1 = SignedDuration::new(-12, -600_000_000);
    /// let duration2 = SignedDuration::new(6, 300_000_000);
    /// assert_eq!(duration1.div_duration_f64(duration2), -2.0);
    ///
    /// let duration1 = SignedDuration::new(-12, -600_000_000);
    /// let duration2 = SignedDuration::new(-6, -300_000_000);
    /// assert_eq!(duration1.div_duration_f64(duration2), 2.0);
    /// ```
    #[inline]
    pub fn div_duration_f64(self, rhs: SignedDuration) -> f64 {
        let lhs_nanos =
            (self.secs as f64) * (NANOS_PER_SEC as f64) + (self.nanos as f64);
        let rhs_nanos =
            (rhs.secs as f64) * (NANOS_PER_SEC as f64) + (rhs.nanos as f64);
        lhs_nanos / rhs_nanos
    }

    /// Divides this signed duration by another signed duration and returns the
    /// corresponding 32-bit float result.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration1 = SignedDuration::new(12, 600_000_000);
    /// let duration2 = SignedDuration::new(6, 300_000_000);
    /// assert_eq!(duration1.div_duration_f32(duration2), 2.0);
    ///
    /// let duration1 = SignedDuration::new(-12, -600_000_000);
    /// let duration2 = SignedDuration::new(6, 300_000_000);
    /// assert_eq!(duration1.div_duration_f32(duration2), -2.0);
    ///
    /// let duration1 = SignedDuration::new(-12, -600_000_000);
    /// let duration2 = SignedDuration::new(-6, -300_000_000);
    /// assert_eq!(duration1.div_duration_f32(duration2), 2.0);
    /// ```
    #[inline]
    pub fn div_duration_f32(self, rhs: SignedDuration) -> f32 {
        let lhs_nanos =
            (self.secs as f32) * (NANOS_PER_SEC as f32) + (self.nanos as f32);
        let rhs_nanos =
            (rhs.secs as f32) * (NANOS_PER_SEC as f32) + (rhs.nanos as f32);
        lhs_nanos / rhs_nanos
    }
}

/// Additional APIs not found in the standard library.
///
/// In most cases, these APIs exist as a result of the fact that this duration
/// is signed.
impl SignedDuration {
    /// Returns the number of whole hours in this duration.
    ///
    /// The value returned is negative when the duration is negative.
    ///
    /// This does not include any fractional component corresponding to units
    /// less than an hour.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(86_400, 999_999_999);
    /// assert_eq!(duration.as_hours(), 24);
    ///
    /// let duration = SignedDuration::new(-86_400, -999_999_999);
    /// assert_eq!(duration.as_hours(), -24);
    /// ```
    #[inline]
    pub const fn as_hours(&self) -> i64 {
        self.as_secs() / (MINS_PER_HOUR * SECS_PER_MINUTE)
    }

    /// Returns the number of whole minutes in this duration.
    ///
    /// The value returned is negative when the duration is negative.
    ///
    /// This does not include any fractional component corresponding to units
    /// less than a minute.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(3_600, 999_999_999);
    /// assert_eq!(duration.as_mins(), 60);
    ///
    /// let duration = SignedDuration::new(-3_600, -999_999_999);
    /// assert_eq!(duration.as_mins(), -60);
    /// ```
    #[inline]
    pub const fn as_mins(&self) -> i64 {
        self.as_secs() / SECS_PER_MINUTE
    }

    /// Returns the absolute value of this signed duration.
    ///
    /// If this duration isn't negative, then this returns the original
    /// duration unchanged.
    ///
    /// # Panics
    ///
    /// This panics when the seconds component of this signed duration is
    /// equal to `i64::MIN`.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(1, -1_999_999_999);
    /// assert_eq!(duration.abs(), SignedDuration::new(0, 999_999_999));
    /// ```
    #[inline]
    pub const fn abs(self) -> SignedDuration {
        SignedDuration::new_unchecked(self.secs.abs(), self.nanos.abs())
    }

    /// Returns the absolute value of this signed duration as a
    /// [`std::time::Duration`]. More specifically, this routine cannot
    /// panic because the absolute value of `SignedDuration::MIN` is
    /// representable in a `std::time::Duration`.
    ///
    /// # Example
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::MIN;
    /// assert_eq!(
    ///     duration.unsigned_abs(),
    ///     Duration::new(i64::MIN.unsigned_abs(), 999_999_999),
    /// );
    /// ```
    #[inline]
    pub const fn unsigned_abs(self) -> Duration {
        Duration::new(self.secs.unsigned_abs(), self.nanos.unsigned_abs())
    }

    /// Returns this duration with its sign flipped.
    ///
    /// If this duration is zero, then this returns the duration unchanged.
    ///
    /// This returns none if the negation does not exist. This occurs in
    /// precisely the cases when [`SignedDuration::as_secs`] is equal to
    /// `i64::MIN`.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(12, 123_456_789);
    /// assert_eq!(
    ///     duration.checked_neg(),
    ///     Some(SignedDuration::new(-12, -123_456_789)),
    /// );
    ///
    /// let duration = SignedDuration::new(-12, -123_456_789);
    /// assert_eq!(
    ///     duration.checked_neg(),
    ///     Some(SignedDuration::new(12, 123_456_789)),
    /// );
    ///
    /// // Negating the minimum seconds isn't possible.
    /// assert_eq!(SignedDuration::MIN.checked_neg(), None);
    /// ```
    #[inline]
    pub const fn checked_neg(self) -> Option<SignedDuration> {
        let Some(secs) = self.secs.checked_neg() else { return None };
        Some(SignedDuration::new_unchecked(
            secs,
            // Always OK because `-999_999_999 <= self.nanos <= 999_999_999`.
            -self.nanos,
        ))
    }

    /// Returns a number that represents the sign of this duration.
    ///
    /// * When [`SignedDuration::is_zero`] is true, this returns `0`.
    /// * When [`SignedDuration::is_positive`] is true, this returns `1`.
    /// * When [`SignedDuration::is_negative`] is true, this returns `-1`.
    ///
    /// The above cases are mutually exclusive.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// assert_eq!(0, SignedDuration::ZERO.signum());
    /// ```
    #[inline]
    pub const fn signum(self) -> i8 {
        if self.is_zero() {
            0
        } else if self.is_positive() {
            1
        } else {
            debug_assert!(self.is_negative());
            -1
        }
    }

    /// Returns true when this duration is positive. That is, greater than
    /// [`SignedDuration::ZERO`].
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(0, 1);
    /// assert!(duration.is_positive());
    /// ```
    #[inline]
    pub const fn is_positive(&self) -> bool {
        self.secs.is_positive() || self.nanos.is_positive()
    }

    /// Returns true when this duration is negative. That is, less than
    /// [`SignedDuration::ZERO`].
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::SignedDuration;
    ///
    /// let duration = SignedDuration::new(0, -1);
    /// assert!(duration.is_negative());
    /// ```
    #[inline]
    pub const fn is_negative(&self) -> bool {
        self.secs.is_negative() || self.nanos.is_negative()
    }
}

/// Additional APIs for computing the duration between date and time values.
impl SignedDuration {
    pub(crate) fn zoned_until(
        zoned1: &Zoned,
        zoned2: &Zoned,
    ) -> SignedDuration {
        SignedDuration::timestamp_until(zoned1.timestamp(), zoned2.timestamp())
    }

    pub(crate) fn timestamp_until(
        timestamp1: Timestamp,
        timestamp2: Timestamp,
    ) -> SignedDuration {
        // OK because all the difference between any two timestamp values can
        // fit into a signed duration.
        timestamp2.as_duration() - timestamp1.as_duration()
    }

    pub(crate) fn datetime_until(
        datetime1: DateTime,
        datetime2: DateTime,
    ) -> SignedDuration {
        let date_until =
            SignedDuration::date_until(datetime1.date(), datetime2.date());
        let time_until =
            SignedDuration::time_until(datetime1.time(), datetime2.time());
        // OK because the difference between any two datetimes can bit into a
        // 96-bit integer of nanoseconds.
        date_until + time_until
    }

    pub(crate) fn date_until(date1: Date, date2: Date) -> SignedDuration {
        let days = date1.until_days_ranged(date2);
        // OK because difference in days fits in an i32, and multiplying an
        // i32 by 24 will never overflow an i64.
        let hours = 24 * i64::from(days.get());
        SignedDuration::from_hours(hours)
    }

    pub(crate) fn time_until(time1: Time, time2: Time) -> SignedDuration {
        let nanos = time1.until_nanoseconds(time2);
        SignedDuration::from_nanos(nanos.get())
    }

    pub(crate) fn offset_until(
        offset1: Offset,
        offset2: Offset,
    ) -> SignedDuration {
        let secs1 = i64::from(offset1.seconds());
        let secs2 = i64::from(offset2.seconds());
        // OK because subtracting any two i32 values will
        // never overflow an i64.
        let diff = secs2 - secs1;
        SignedDuration::from_secs(diff)
    }

    /// Returns the duration from `time1` until `time2` where the times are
    /// [`std::time::SystemTime`] values from the standard library.
    ///
    /// # Errors
    ///
    /// This returns an error if the difference between the two time values
    /// overflows the signed duration limits.
    ///
    /// # Example
    ///
    /// ```
    /// use std::time::{Duration, SystemTime};
    /// use jiff::SignedDuration;
    ///
    /// let time1 = SystemTime::UNIX_EPOCH;
    /// let time2 = time1.checked_add(Duration::from_secs(86_400)).unwrap();
    /// assert_eq!(
    ///     SignedDuration::system_until(time1, time2)?,
    ///     SignedDuration::from_hours(24),
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[cfg(feature = "std")]
    #[inline]
    pub fn system_until(
        time1: std::time::SystemTime,
        time2: std::time::SystemTime,
    ) -> Result<SignedDuration, Error> {
        match time2.duration_since(time1) {
            Ok(dur) => SignedDuration::try_from(dur).with_context(|| {
                err!(
                    "unsigned duration {dur:?} for system time since \
                     Unix epoch overflowed signed duration"
                )
            }),
            Err(err) => {
                let dur = err.duration();
                let dur =
                    SignedDuration::try_from(dur).with_context(|| {
                        err!(
                        "unsigned duration {dur:?} for system time before \
                         Unix epoch overflowed signed duration"
                    )
                    })?;
                dur.checked_neg().ok_or_else(|| {
                    err!("negating duration {dur:?} from before the Unix epoch \
                     overflowed signed duration")
                })
            }
        }
    }
}

/// Jiff specific APIs.
impl SignedDuration {
    /// Returns a new signed duration that is rounded according to the given
    /// configuration.
    ///
    /// Rounding a duration has a number of parameters, all of which are
    /// optional. When no parameters are given, then no rounding is done, and
    /// the duration as given is returned. That is, it's a no-op.
    ///
    /// As is consistent with `SignedDuration` itself, rounding only supports
    /// time units, i.e., units of hours or smaller. If a calendar `Unit` is
    /// provided, then an error is returned. In order to round a duration with
    /// calendar units, you must use [`Span::round`](crate::Span::round) and
    /// provide a relative datetime.
    ///
    /// The parameters are, in brief:
    ///
    /// * [`SignedDurationRound::smallest`] sets the smallest [`Unit`] that
    /// is allowed to be non-zero in the duration returned. By default, it
    /// is set to [`Unit::Nanosecond`], i.e., no rounding occurs. When the
    /// smallest unit is set to something bigger than nanoseconds, then the
    /// non-zero units in the duration smaller than the smallest unit are used
    /// to determine how the duration should be rounded. For example, rounding
    /// `1 hour 59 minutes` to the nearest hour using the default rounding mode
    /// would produce `2 hours`.
    /// * [`SignedDurationRound::mode`] determines how to handle the remainder
    /// when rounding. The default is [`RoundMode::HalfExpand`], which
    /// corresponds to how you were likely taught to round in school.
    /// Alternative modes, like [`RoundMode::Trunc`], exist too. For example,
    /// a truncating rounding of `1 hour 59 minutes` to the nearest hour would
    /// produce `1 hour`.
    /// * [`SignedDurationRound::increment`] sets the rounding granularity to
    /// use for the configured smallest unit. For example, if the smallest unit
    /// is minutes and the increment is 5, then the duration returned will
    /// always have its minute units set to a multiple of `5`.
    ///
    /// # Errors
    ///
    /// In general, there are two main ways for rounding to fail: an improper
    /// configuration like trying to round a duration to the nearest calendar
    /// unit, or when overflow occurs. Overflow can occur when the duration
    /// would exceed the minimum or maximum `SignedDuration` values. Typically,
    /// this can only realistically happen if the duration before rounding is
    /// already close to its minimum or maximum value.
    ///
    /// # Example: round to the nearest second
    ///
    /// This shows how to round a duration to the nearest second. This might
    /// be useful when you want to chop off any sub-second component in a way
    /// that depends on how close it is (or not) to the next second.
    ///
    /// ```
    /// use jiff::{SignedDuration, Unit};
    ///
    /// // rounds up
    /// let dur = SignedDuration::new(4 * 60 * 60 + 50 * 60 + 32, 500_000_000);
    /// assert_eq!(
    ///     dur.round(Unit::Second)?,
    ///     SignedDuration::new(4 * 60 * 60 + 50 * 60 + 33, 0),
    /// );
    /// // rounds down
    /// let dur = SignedDuration::new(4 * 60 * 60 + 50 * 60 + 32, 499_999_999);
    /// assert_eq!(
    ///     dur.round(Unit::Second)?,
    ///     SignedDuration::new(4 * 60 * 60 + 50 * 60 + 32, 0),
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: round to the nearest half minute
    ///
    /// One can use [`SignedDurationRound::increment`] to set the rounding
    /// increment:
    ///
    /// ```
    /// use jiff::{SignedDuration, SignedDurationRound, Unit};
    ///
    /// let options = SignedDurationRound::new()
    ///     .smallest(Unit::Second)
    ///     .increment(30);
    ///
    /// // rounds up
    /// let dur = SignedDuration::from_secs(4 * 60 * 60 + 50 * 60 + 15);
    /// assert_eq!(
    ///     dur.round(options)?,
    ///     SignedDuration::from_secs(4 * 60 * 60 + 50 * 60 + 30),
    /// );
    /// // rounds down
    /// let dur = SignedDuration::from_secs(4 * 60 * 60 + 50 * 60 + 14);
    /// assert_eq!(
    ///     dur.round(options)?,
    ///     SignedDuration::from_secs(4 * 60 * 60 + 50 * 60),
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: overflow results in an error
    ///
    /// If rounding would result in a value that exceeds a `SignedDuration`'s
    /// minimum or maximum values, then an error occurs:
    ///
    /// ```
    /// use jiff::{SignedDuration, Unit};
    ///
    /// assert_eq!(
    ///     SignedDuration::MAX.round(Unit::Hour).unwrap_err().to_string(),
    ///     "rounding `2562047788015215h 30m 7s 999ms 999µs 999ns` to \
    ///      nearest hour in increments of 1 resulted in \
    ///      9223372036854777600 seconds, which does not fit into an i64 \
    ///      and thus overflows `SignedDuration`",
    /// );
    /// assert_eq!(
    ///     SignedDuration::MIN.round(Unit::Hour).unwrap_err().to_string(),
    ///     "rounding `2562047788015215h 30m 8s 999ms 999µs 999ns ago` to \
    ///      nearest hour in increments of 1 resulted in \
    ///      -9223372036854777600 seconds, which does not fit into an i64 \
    ///      and thus overflows `SignedDuration`",
    /// );
    /// ```
    ///
    /// # Example: rounding with a calendar unit results in an error
    ///
    /// ```
    /// use jiff::{SignedDuration, Unit};
    ///
    /// assert_eq!(
    ///     SignedDuration::ZERO.round(Unit::Day).unwrap_err().to_string(),
    ///     "rounding `SignedDuration` failed \
    ///      because a calendar unit of days was provided \
    ///      (to round by calendar units, you must use a `Span`)",
    /// );
    /// ```
    #[inline]
    pub fn round<R: Into<SignedDurationRound>>(
        self,
        options: R,
    ) -> Result<SignedDuration, Error> {
        let options: SignedDurationRound = options.into();
        options.round(self)
    }
}

impl core::fmt::Display for SignedDuration {
    #[inline]
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        use crate::fmt::StdFmtWrite;

        if f.alternate() {
            friendly::DEFAULT_SPAN_PRINTER
                .print_duration(self, StdFmtWrite(f))
                .map_err(|_| core::fmt::Error)
        } else {
            temporal::DEFAULT_SPAN_PRINTER
                .print_duration(self, StdFmtWrite(f))
                .map_err(|_| core::fmt::Error)
        }
    }
}

impl core::fmt::Debug for SignedDuration {
    #[inline]
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        use crate::fmt::StdFmtWrite;

        friendly::DEFAULT_SPAN_PRINTER
            .print_duration(self, StdFmtWrite(f))
            .map_err(|_| core::fmt::Error)
    }
}

impl TryFrom<Duration> for SignedDuration {
    type Error = Error;

    fn try_from(d: Duration) -> Result<SignedDuration, Error> {
        let secs = i64::try_from(d.as_secs()).map_err(|_| {
            err!("seconds in unsigned duration {d:?} overflowed i64")
        })?;
        // Guaranteed to succeed since 0<=nanos<=999,999,999.
        let nanos = i32::try_from(d.subsec_nanos()).unwrap();
        Ok(SignedDuration::new_unchecked(secs, nanos))
    }
}

impl TryFrom<SignedDuration> for Duration {
    type Error = Error;

    fn try_from(sd: SignedDuration) -> Result<Duration, Error> {
        // This isn't needed, but improves error messages.
        if sd.is_negative() {
            return Err(err!(
                "cannot convert negative duration `{sd:?}` to \
                 unsigned `std::time::Duration`",
            ));
        }
        let secs = u64::try_from(sd.as_secs()).map_err(|_| {
            err!("seconds in signed duration {sd:?} overflowed u64")
        })?;
        // Guaranteed to succeed because the above only succeeds
        // when `sd` is non-negative. And when `sd` is non-negative,
        // we are guaranteed that 0<=nanos<=999,999,999.
        let nanos = u32::try_from(sd.subsec_nanos()).unwrap();
        Ok(Duration::new(secs, nanos))
    }
}

impl From<Offset> for SignedDuration {
    fn from(offset: Offset) -> SignedDuration {
        SignedDuration::from_secs(i64::from(offset.seconds()))
    }
}

impl core::str::FromStr for SignedDuration {
    type Err = Error;

    #[inline]
    fn from_str(string: &str) -> Result<SignedDuration, Error> {
        parse_iso_or_friendly(string.as_bytes())
    }
}

impl core::ops::Neg for SignedDuration {
    type Output = SignedDuration;

    #[inline]
    fn neg(self) -> SignedDuration {
        self.checked_neg().expect("overflow when negating signed duration")
    }
}

impl core::ops::Add for SignedDuration {
    type Output = SignedDuration;

    #[inline]
    fn add(self, rhs: SignedDuration) -> SignedDuration {
        self.checked_add(rhs).expect("overflow when adding signed durations")
    }
}

impl core::ops::AddAssign for SignedDuration {
    #[inline]
    fn add_assign(&mut self, rhs: SignedDuration) {
        *self = *self + rhs;
    }
}

impl core::ops::Sub for SignedDuration {
    type Output = SignedDuration;

    #[inline]
    fn sub(self, rhs: SignedDuration) -> SignedDuration {
        self.checked_sub(rhs)
            .expect("overflow when subtracting signed durations")
    }
}

impl core::ops::SubAssign for SignedDuration {
    #[inline]
    fn sub_assign(&mut self, rhs: SignedDuration) {
        *self = *self - rhs;
    }
}

impl core::ops::Mul<i32> for SignedDuration {
    type Output = SignedDuration;

    #[inline]
    fn mul(self, rhs: i32) -> SignedDuration {
        self.checked_mul(rhs)
            .expect("overflow when multiplying signed duration by scalar")
    }
}

impl core::ops::Mul<SignedDuration> for i32 {
    type Output = SignedDuration;

    #[inline]
    fn mul(self, rhs: SignedDuration) -> SignedDuration {
        rhs * self
    }
}

impl core::ops::MulAssign<i32> for SignedDuration {
    #[inline]
    fn mul_assign(&mut self, rhs: i32) {
        *self = *self * rhs;
    }
}

impl core::ops::Div<i32> for SignedDuration {
    type Output = SignedDuration;

    #[inline]
    fn div(self, rhs: i32) -> SignedDuration {
        self.checked_div(rhs)
            .expect("overflow when dividing signed duration by scalar")
    }
}

impl core::ops::DivAssign<i32> for SignedDuration {
    #[inline]
    fn div_assign(&mut self, rhs: i32) {
        *self = *self / rhs;
    }
}

#[cfg(feature = "serde")]
impl serde::Serialize for SignedDuration {
    #[inline]
    fn serialize<S: serde::Serializer>(
        &self,
        serializer: S,
    ) -> Result<S::Ok, S::Error> {
        serializer.collect_str(self)
    }
}

#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for SignedDuration {
    #[inline]
    fn deserialize<D: serde::Deserializer<'de>>(
        deserializer: D,
    ) -> Result<SignedDuration, D::Error> {
        use serde::de;

        struct SignedDurationVisitor;

        impl<'de> de::Visitor<'de> for SignedDurationVisitor {
            type Value = SignedDuration;

            fn expecting(
                &self,
                f: &mut core::fmt::Formatter,
            ) -> core::fmt::Result {
                f.write_str("a signed duration string")
            }

            #[inline]
            fn visit_bytes<E: de::Error>(
                self,
                value: &[u8],
            ) -> Result<SignedDuration, E> {
                parse_iso_or_friendly(value).map_err(de::Error::custom)
            }

            #[inline]
            fn visit_str<E: de::Error>(
                self,
                value: &str,
            ) -> Result<SignedDuration, E> {
                self.visit_bytes(value.as_bytes())
            }
        }

        deserializer.deserialize_str(SignedDurationVisitor)
    }
}

/// Options for [`SignedDuration::round`].
///
/// This type provides a way to configure the rounding of a duration. This
/// includes setting the smallest unit (i.e., the unit to round), the rounding
/// increment and the rounding mode (e.g., "ceil" or "truncate").
///
/// `SignedDuration::round` accepts anything that implements
/// `Into<SignedDurationRound>`. There are a few key trait implementations that
/// make this convenient:
///
/// * `From<Unit> for SignedDurationRound` will construct a rounding
/// configuration where the smallest unit is set to the one given.
/// * `From<(Unit, i64)> for SignedDurationRound` will construct a rounding
/// configuration where the smallest unit and the rounding increment are set to
/// the ones given.
///
/// In order to set other options (like the rounding mode), one must explicitly
/// create a `SignedDurationRound` and pass it to `SignedDuration::round`.
///
/// # Example
///
/// This example shows how to always round up to the nearest half-minute:
///
/// ```
/// use jiff::{RoundMode, SignedDuration, SignedDurationRound, Unit};
///
/// let dur = SignedDuration::new(4 * 60 * 60 + 17 * 60 + 1, 123_456_789);
/// let rounded = dur.round(
///     SignedDurationRound::new()
///         .smallest(Unit::Second)
///         .increment(30)
///         .mode(RoundMode::Expand),
/// )?;
/// assert_eq!(rounded, SignedDuration::from_secs(4 * 60 * 60 + 17 * 60 + 30));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy, Debug)]
pub struct SignedDurationRound {
    smallest: Unit,
    mode: RoundMode,
    increment: i64,
}

impl SignedDurationRound {
    /// Create a new default configuration for rounding a signed duration via
    /// [`SignedDuration::round`].
    ///
    /// The default configuration does no rounding.
    #[inline]
    pub fn new() -> SignedDurationRound {
        SignedDurationRound {
            smallest: Unit::Nanosecond,
            mode: RoundMode::HalfExpand,
            increment: 1,
        }
    }

    /// Set the smallest units allowed in the duration returned. These are the
    /// units that the duration is rounded to.
    ///
    /// # Errors
    ///
    /// The unit must be [`Unit::Hour`] or smaller.
    ///
    /// # Example
    ///
    /// A basic example that rounds to the nearest minute:
    ///
    /// ```
    /// use jiff::{SignedDuration, Unit};
    ///
    /// let duration = SignedDuration::new(15 * 60 + 46, 0);
    /// assert_eq!(duration.round(Unit::Minute)?, SignedDuration::from_mins(16));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn smallest(self, unit: Unit) -> SignedDurationRound {
        SignedDurationRound { smallest: unit, ..self }
    }

    /// Set the rounding mode.
    ///
    /// This defaults to [`RoundMode::HalfExpand`], which makes rounding work
    /// like how you were taught in school.
    ///
    /// # Example
    ///
    /// A basic example that rounds to the nearest minute, but changing its
    /// rounding mode to truncation:
    ///
    /// ```
    /// use jiff::{RoundMode, SignedDuration, SignedDurationRound, Unit};
    ///
    /// let duration = SignedDuration::new(15 * 60 + 46, 0);
    /// assert_eq!(
    ///     duration.round(SignedDurationRound::new()
    ///         .smallest(Unit::Minute)
    ///         .mode(RoundMode::Trunc),
    ///     )?,
    ///     // The default round mode does rounding like
    ///     // how you probably learned in school, and would
    ///     // result in rounding up to 16 minutes. But we
    ///     // change it to truncation here, which makes it
    ///     // round down.
    ///     SignedDuration::from_mins(15),
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn mode(self, mode: RoundMode) -> SignedDurationRound {
        SignedDurationRound { mode, ..self }
    }

    /// Set the rounding increment for the smallest unit.
    ///
    /// The default value is `1`. Other values permit rounding the smallest
    /// unit to the nearest integer increment specified. For example, if the
    /// smallest unit is set to [`Unit::Minute`], then a rounding increment of
    /// `30` would result in rounding in increments of a half hour. That is,
    /// the only minute value that could result would be `0` or `30`.
    ///
    /// # Errors
    ///
    /// The rounding increment must divide evenly into the next highest unit
    /// after the smallest unit configured (and must not be equivalent to it).
    /// For example, if the smallest unit is [`Unit::Nanosecond`], then *some*
    /// of the valid values for the rounding increment are `1`, `2`, `4`, `5`,
    /// `100` and `500`. Namely, any integer that divides evenly into `1,000`
    /// nanoseconds since there are `1,000` nanoseconds in the next highest
    /// unit (microseconds).
    ///
    /// # Example
    ///
    /// This shows how to round a duration to the nearest 5 minute increment:
    ///
    /// ```
    /// use jiff::{SignedDuration, Unit};
    ///
    /// let duration = SignedDuration::new(4 * 60 * 60 + 2 * 60 + 30, 0);
    /// assert_eq!(
    ///     duration.round((Unit::Minute, 5))?,
    ///     SignedDuration::new(4 * 60 * 60 + 5 * 60, 0),
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn increment(self, increment: i64) -> SignedDurationRound {
        SignedDurationRound { increment, ..self }
    }

    /// Returns the `smallest` unit configuration.
    pub(crate) fn get_smallest(&self) -> Unit {
        self.smallest
    }

    /// Does the actual duration rounding.
    fn round(&self, dur: SignedDuration) -> Result<SignedDuration, Error> {
        if self.smallest > Unit::Hour {
            return Err(err!(
                "rounding `SignedDuration` failed because \
                 a calendar unit of {plural} was provided \
                 (to round by calendar units, you must use a `Span`)",
                plural = self.smallest.plural(),
            ));
        }
        let nanos = t::NoUnits128::new_unchecked(dur.as_nanos());
        let increment = t::NoUnits::new_unchecked(self.increment);
        let rounded = self.mode.round_by_unit_in_nanoseconds(
            nanos,
            self.smallest,
            increment,
        );

        let seconds = rounded / t::NANOS_PER_SECOND;
        let seconds =
            t::NoUnits::try_rfrom("seconds", seconds).map_err(|_| {
                err!(
                    "rounding `{dur:#}` to nearest {singular} in increments \
                     of {increment} resulted in {seconds} seconds, which does \
                     not fit into an i64 and thus overflows `SignedDuration`",
                    singular = self.smallest.singular(),
                )
            })?;
        let subsec_nanos = rounded % t::NANOS_PER_SECOND;
        // OK because % 1_000_000_000 above guarantees that the result fits
        // in a i32.
        let subsec_nanos = i32::try_from(subsec_nanos).unwrap();
        Ok(SignedDuration::new(seconds.get(), subsec_nanos))
    }
}

impl Default for SignedDurationRound {
    fn default() -> SignedDurationRound {
        SignedDurationRound::new()
    }
}

impl From<Unit> for SignedDurationRound {
    fn from(unit: Unit) -> SignedDurationRound {
        SignedDurationRound::default().smallest(unit)
    }
}

impl From<(Unit, i64)> for SignedDurationRound {
    fn from((unit, increment): (Unit, i64)) -> SignedDurationRound {
        SignedDurationRound::default().smallest(unit).increment(increment)
    }
}

/// A common parsing function that works in bytes.
///
/// Specifically, this parses either an ISO 8601 duration into a
/// `SignedDuration` or a "friendly" duration into a `SignedDuration`. It also
/// tries to give decent error messages.
///
/// This works because the friendly and ISO 8601 formats have non-overlapping
/// prefixes. Both can start with a `+` or `-`, but aside from that, an ISO
/// 8601 duration _always_ has to start with a `P` or `p`. We can utilize this
/// property to very quickly determine how to parse the input. We just need to
/// handle the possibly ambiguous case with a leading sign a little carefully
/// in order to ensure good error messages.
///
/// (We do the same thing for `Span`.)
#[inline(always)]
fn parse_iso_or_friendly(bytes: &[u8]) -> Result<SignedDuration, Error> {
    if bytes.is_empty() {
        return Err(err!(
            "an empty string is not a valid `SignedDuration`, \
             expected either a ISO 8601 or Jiff's 'friendly' \
             format",
        ));
    }
    let mut first = bytes[0];
    if first == b'+' || first == b'-' {
        if bytes.len() == 1 {
            return Err(err!(
                "found nothing after sign `{sign}`, \
                 which is not a valid `SignedDuration`, \
                 expected either a ISO 8601 or Jiff's 'friendly' \
                 format",
                sign = escape::Byte(first),
            ));
        }
        first = bytes[1];
    }
    if first == b'P' || first == b'p' {
        temporal::DEFAULT_SPAN_PARSER.parse_duration(bytes)
    } else {
        friendly::DEFAULT_SPAN_PARSER.parse_duration(bytes)
    }
}

#[cfg(test)]
mod tests {
    use std::io::Cursor;

    use alloc::string::ToString;

    use super::*;

    #[test]
    fn new() {
        let d = SignedDuration::new(12, i32::MAX);
        assert_eq!(d.as_secs(), 14);
        assert_eq!(d.subsec_nanos(), 147_483_647);

        let d = SignedDuration::new(-12, i32::MIN);
        assert_eq!(d.as_secs(), -14);
        assert_eq!(d.subsec_nanos(), -147_483_648);

        let d = SignedDuration::new(i64::MAX, i32::MIN);
        assert_eq!(d.as_secs(), i64::MAX - 3);
        assert_eq!(d.subsec_nanos(), 852_516_352);

        let d = SignedDuration::new(i64::MIN, i32::MAX);
        assert_eq!(d.as_secs(), i64::MIN + 3);
        assert_eq!(d.subsec_nanos(), -852_516_353);
    }

    #[test]
    #[should_panic]
    fn new_fail_positive() {
        SignedDuration::new(i64::MAX, 1_000_000_000);
    }

    #[test]
    #[should_panic]
    fn new_fail_negative() {
        SignedDuration::new(i64::MIN, -1_000_000_000);
    }

    #[test]
    fn from_hours_limits() {
        let d = SignedDuration::from_hours(2_562_047_788_015_215);
        assert_eq!(d.as_secs(), 9223372036854774000);

        let d = SignedDuration::from_hours(-2_562_047_788_015_215);
        assert_eq!(d.as_secs(), -9223372036854774000);
    }

    #[test]
    #[should_panic]
    fn from_hours_fail_positive() {
        SignedDuration::from_hours(2_562_047_788_015_216);
    }

    #[test]
    #[should_panic]
    fn from_hours_fail_negative() {
        SignedDuration::from_hours(-2_562_047_788_015_216);
    }

    #[test]
    fn from_minutes_limits() {
        let d = SignedDuration::from_mins(153_722_867_280_912_930);
        assert_eq!(d.as_secs(), 9223372036854775800);

        let d = SignedDuration::from_mins(-153_722_867_280_912_930);
        assert_eq!(d.as_secs(), -9223372036854775800);
    }

    #[test]
    #[should_panic]
    fn from_minutes_fail_positive() {
        SignedDuration::from_mins(153_722_867_280_912_931);
    }

    #[test]
    #[should_panic]
    fn from_minutes_fail_negative() {
        SignedDuration::from_mins(-153_722_867_280_912_931);
    }

    #[test]
    fn add() {
        let add = |(secs1, nanos1): (i64, i32),
                   (secs2, nanos2): (i64, i32)|
         -> (i64, i32) {
            let d1 = SignedDuration::new(secs1, nanos1);
            let d2 = SignedDuration::new(secs2, nanos2);
            let sum = d1.checked_add(d2).unwrap();
            (sum.as_secs(), sum.subsec_nanos())
        };

        assert_eq!(add((1, 1), (1, 1)), (2, 2));
        assert_eq!(add((1, 1), (-1, -1)), (0, 0));
        assert_eq!(add((-1, -1), (1, 1)), (0, 0));
        assert_eq!(add((-1, -1), (-1, -1)), (-2, -2));

        assert_eq!(add((1, 500_000_000), (1, 500_000_000)), (3, 0));
        assert_eq!(add((-1, -500_000_000), (-1, -500_000_000)), (-3, 0));
        assert_eq!(
            add((5, 200_000_000), (-1, -500_000_000)),
            (3, 700_000_000)
        );
        assert_eq!(
            add((-5, -200_000_000), (1, 500_000_000)),
            (-3, -700_000_000)
        );
    }

    #[test]
    fn add_overflow() {
        let add = |(secs1, nanos1): (i64, i32),
                   (secs2, nanos2): (i64, i32)|
         -> Option<(i64, i32)> {
            let d1 = SignedDuration::new(secs1, nanos1);
            let d2 = SignedDuration::new(secs2, nanos2);
            d1.checked_add(d2).map(|d| (d.as_secs(), d.subsec_nanos()))
        };
        assert_eq!(None, add((i64::MAX, 0), (1, 0)));
        assert_eq!(None, add((i64::MIN, 0), (-1, 0)));
        assert_eq!(None, add((i64::MAX, 1), (0, 999_999_999)));
        assert_eq!(None, add((i64::MIN, -1), (0, -999_999_999)));
    }

    /// # `serde` deserializer compatibility test
    ///
    /// Serde YAML used to be unable to deserialize `jiff` types,
    /// as deserializing from bytes is not supported by the deserializer.
    ///
    /// - <https://github.com/BurntSushi/jiff/issues/138>
    /// - <https://github.com/BurntSushi/jiff/discussions/148>
    #[test]
    fn signed_duration_deserialize_yaml() {
        let expected = SignedDuration::from_secs(123456789);

        let deserialized: SignedDuration =
            serde_yaml::from_str("PT34293h33m9s").unwrap();

        assert_eq!(deserialized, expected);

        let deserialized: SignedDuration =
            serde_yaml::from_slice("PT34293h33m9s".as_bytes()).unwrap();

        assert_eq!(deserialized, expected);

        let cursor = Cursor::new(b"PT34293h33m9s");
        let deserialized: SignedDuration =
            serde_yaml::from_reader(cursor).unwrap();

        assert_eq!(deserialized, expected);
    }

    #[test]
    fn from_str() {
        let p = |s: &str| -> Result<SignedDuration, Error> { s.parse() };

        insta::assert_snapshot!(
            p("1 hour").unwrap(),
            @"PT1H",
        );
        insta::assert_snapshot!(
            p("+1 hour").unwrap(),
            @"PT1H",
        );
        insta::assert_snapshot!(
            p("-1 hour").unwrap(),
            @"-PT1H",
        );
        insta::assert_snapshot!(
            p("PT1h").unwrap(),
            @"PT1H",
        );
        insta::assert_snapshot!(
            p("+PT1h").unwrap(),
            @"PT1H",
        );
        insta::assert_snapshot!(
            p("-PT1h").unwrap(),
            @"-PT1H",
        );

        insta::assert_snapshot!(
            p("").unwrap_err(),
            @"an empty string is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format",
        );
        insta::assert_snapshot!(
            p("+").unwrap_err(),
            @"found nothing after sign `+`, which is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format",
        );
        insta::assert_snapshot!(
            p("-").unwrap_err(),
            @"found nothing after sign `-`, which is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format",
        );
    }

    #[test]
    fn serde_deserialize() {
        let p = |s: &str| -> Result<SignedDuration, serde_json::Error> {
            serde_json::from_str(&alloc::format!("\"{s}\""))
        };

        insta::assert_snapshot!(
            p("1 hour").unwrap(),
            @"PT1H",
        );
        insta::assert_snapshot!(
            p("+1 hour").unwrap(),
            @"PT1H",
        );
        insta::assert_snapshot!(
            p("-1 hour").unwrap(),
            @"-PT1H",
        );
        insta::assert_snapshot!(
            p("PT1h").unwrap(),
            @"PT1H",
        );
        insta::assert_snapshot!(
            p("+PT1h").unwrap(),
            @"PT1H",
        );
        insta::assert_snapshot!(
            p("-PT1h").unwrap(),
            @"-PT1H",
        );

        insta::assert_snapshot!(
            p("").unwrap_err(),
            @"an empty string is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 2",
        );
        insta::assert_snapshot!(
            p("+").unwrap_err(),
            @"found nothing after sign `+`, which is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 3",
        );
        insta::assert_snapshot!(
            p("-").unwrap_err(),
            @"found nothing after sign `-`, which is not a valid `SignedDuration`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 3",
        );
    }

    /// This test ensures that we can parse `humantime` formatted durations.
    #[test]
    fn humantime_compatibility_parse() {
        let dur = std::time::Duration::new(26_784, 123_456_789);
        let formatted = humantime::format_duration(dur).to_string();
        assert_eq!(formatted, "7h 26m 24s 123ms 456us 789ns");

        let expected = SignedDuration::try_from(dur).unwrap();
        assert_eq!(formatted.parse::<SignedDuration>().unwrap(), expected);
    }

    /// This test ensures that we can print a `SignedDuration` that `humantime`
    /// can parse.
    ///
    /// Note that this isn't the default since `humantime`'s parser is
    /// pretty limited. e.g., It doesn't support things like `nsecs`
    /// despite supporting `secs`. And other reasons. See the docs on
    /// `Designator::HumanTime` for why we sadly provide a custom variant for
    /// it.
    #[test]
    fn humantime_compatibility_print() {
        static PRINTER: friendly::SpanPrinter = friendly::SpanPrinter::new()
            .designator(friendly::Designator::HumanTime);

        let sdur = SignedDuration::new(26_784, 123_456_789);
        let formatted = PRINTER.duration_to_string(&sdur);
        assert_eq!(formatted, "7h 26m 24s 123ms 456us 789ns");

        let dur = humantime::parse_duration(&formatted).unwrap();
        let expected = std::time::Duration::try_from(sdur).unwrap();
        assert_eq!(dur, expected);
    }
}