jiff/span.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364
use core::{cmp::Ordering, time::Duration as UnsignedDuration};
use crate::{
civil::{Date, DateTime, Time},
duration::{Duration, SDuration},
error::{err, Error, ErrorContext},
fmt::{friendly, temporal},
tz::TimeZone,
util::{
borrow::DumbCow,
escape,
rangeint::{ri64, ri8, RFrom, RInto, TryRFrom, TryRInto},
round::increment,
t::{self, Constant, NoUnits, NoUnits128, Sign, C},
},
RoundMode, SignedDuration, Timestamp, Zoned,
};
/// A macro helper, only used in tests, for comparing spans for equality.
#[cfg(test)]
macro_rules! span_eq {
($span1:expr, $span2:expr $(,)?) => {{
assert_eq!($span1.fieldwise(), $span2.fieldwise());
}};
($span1:expr, $span2:expr, $($tt:tt)*) => {{
assert_eq!($span1.fieldwise(), $span2.fieldwise(), $($tt)*);
}};
}
#[cfg(test)]
pub(crate) use span_eq;
/// A span of time represented via a mixture of calendar and clock units.
///
/// A span represents a duration of time in units of years, months, weeks,
/// days, hours, minutes, seconds, milliseconds, microseconds and nanoseconds.
/// Spans are used to as inputs to routines like
/// [`Zoned::checked_add`] and [`Date::saturating_sub`],
/// and are also outputs from routines like
/// [`Timestamp::since`] and [`DateTime::until`].
///
/// # Range of spans
///
/// Except for nanoseconds, each unit can represent the full span of time
/// expressible via any combination of datetime supported by Jiff. For example:
///
/// ```
/// use jiff::{civil::{DateTime, DateTimeDifference}, ToSpan, Unit};
///
/// let options = DateTimeDifference::new(DateTime::MAX).largest(Unit::Year);
/// assert_eq!(DateTime::MIN.until(options)?.get_years(), 19_998);
///
/// let options = options.largest(Unit::Day);
/// assert_eq!(DateTime::MIN.until(options)?.get_days(), 7_304_483);
///
/// let options = options.largest(Unit::Microsecond);
/// assert_eq!(
/// DateTime::MIN.until(options)?.get_microseconds(),
/// 631_107_417_599_999_999i64,
/// );
///
/// let options = options.largest(Unit::Nanosecond);
/// // Span is too big, overflow!
/// assert!(DateTime::MIN.until(options).is_err());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Building spans
///
/// A default or empty span corresponds to a duration of zero time:
///
/// ```
/// use jiff::Span;
///
/// assert!(Span::new().is_zero());
/// assert!(Span::default().is_zero());
/// ```
///
/// Spans are `Copy` types that have mutator methods on them for creating new
/// spans:
///
/// ```
/// use jiff::Span;
///
/// let span = Span::new().days(5).hours(8).minutes(1);
/// assert_eq!(span.to_string(), "P5DT8H1M");
/// ```
///
/// But Jiff provides a [`ToSpan`] trait that defines extension methods on
/// primitive signed integers to make span creation terser:
///
/// ```
/// use jiff::ToSpan;
///
/// let span = 5.days().hours(8).minutes(1);
/// assert_eq!(span.to_string(), "P5DT8H1M");
/// // singular units on integers can be used too:
/// let span = 1.day().hours(8).minutes(1);
/// assert_eq!(span.to_string(), "P1DT8H1M");
/// ```
///
/// # Negative spans
///
/// A span may be negative. All of these are equivalent:
///
/// ```
/// use jiff::{Span, ToSpan};
///
/// let span = -Span::new().days(5);
/// assert_eq!(span.to_string(), "-P5D");
///
/// let span = Span::new().days(5).negate();
/// assert_eq!(span.to_string(), "-P5D");
///
/// let span = Span::new().days(-5);
/// assert_eq!(span.to_string(), "-P5D");
///
/// let span = -Span::new().days(-5).negate();
/// assert_eq!(span.to_string(), "-P5D");
///
/// let span = -5.days();
/// assert_eq!(span.to_string(), "-P5D");
///
/// let span = (-5).days();
/// assert_eq!(span.to_string(), "-P5D");
///
/// let span = -(5.days());
/// assert_eq!(span.to_string(), "-P5D");
/// ```
///
/// The sign of a span applies to the entire span. When a span is negative,
/// then all of its units are negative:
///
/// ```
/// use jiff::ToSpan;
///
/// let span = -5.days().hours(10).minutes(1);
/// assert_eq!(span.get_days(), -5);
/// assert_eq!(span.get_hours(), -10);
/// assert_eq!(span.get_minutes(), -1);
/// ```
///
/// And if any of a span's units are negative, then the entire span is regarded
/// as negative:
///
/// ```
/// use jiff::ToSpan;
///
/// // It's the same thing.
/// let span = (-5).days().hours(-10).minutes(-1);
/// assert_eq!(span.get_days(), -5);
/// assert_eq!(span.get_hours(), -10);
/// assert_eq!(span.get_minutes(), -1);
///
/// // Still the same. All negative.
/// let span = 5.days().hours(-10).minutes(1);
/// assert_eq!(span.get_days(), -5);
/// assert_eq!(span.get_hours(), -10);
/// assert_eq!(span.get_minutes(), -1);
///
/// // But this is not! The negation in front applies
/// // to the entire span, which was already negative
/// // by virtue of at least one of its units being
/// // negative. So the negation operator in front turns
/// // the span positive.
/// let span = -5.days().hours(-10).minutes(-1);
/// assert_eq!(span.get_days(), 5);
/// assert_eq!(span.get_hours(), 10);
/// assert_eq!(span.get_minutes(), 1);
/// ```
///
/// You can also ask for the absolute value of a span:
///
/// ```
/// use jiff::Span;
///
/// let span = Span::new().days(5).hours(10).minutes(1).negate().abs();
/// assert_eq!(span.get_days(), 5);
/// assert_eq!(span.get_hours(), 10);
/// assert_eq!(span.get_minutes(), 1);
/// ```
///
/// # Parsing and printing
///
/// The `Span` type provides convenient trait implementations of
/// [`std::str::FromStr`] and [`std::fmt::Display`]:
///
/// ```
/// use jiff::{Span, ToSpan};
///
/// let span: Span = "P2m10dT2h30m".parse()?;
/// // By default, capital unit designator labels are used.
/// // This can be changed with `jiff::fmt::temporal::SpanPrinter::lowercase`.
/// assert_eq!(span.to_string(), "P2M10DT2H30M");
///
/// // Or use the "friendly" format by invoking the `Display` alternate:
/// assert_eq!(format!("{span:#}"), "2mo 10d 2h 30m");
///
/// // Parsing automatically supports both the ISO 8601 and "friendly"
/// // formats. Note that we use `Span::fieldwise` to create a `Span` that
/// // compares based on each field. To compare based on total duration, use
/// // `Span::compare` or `Span::total`.
/// let span: Span = "2mo 10d 2h 30m".parse()?;
/// assert_eq!(span, 2.months().days(10).hours(2).minutes(30).fieldwise());
/// let span: Span = "2 months, 10 days, 2 hours, 30 minutes".parse()?;
/// assert_eq!(span, 2.months().days(10).hours(2).minutes(30).fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// The format supported is a variation (nearly a subset) of the duration
/// format specified in [ISO 8601] _and_ a Jiff-specific "friendly" format.
/// Here are more examples:
///
/// ```
/// use jiff::{Span, ToSpan};
///
/// let spans = [
/// // ISO 8601
/// ("P40D", 40.days()),
/// ("P1y1d", 1.year().days(1)),
/// ("P3dT4h59m", 3.days().hours(4).minutes(59)),
/// ("PT2H30M", 2.hours().minutes(30)),
/// ("P1m", 1.month()),
/// ("P1w", 1.week()),
/// ("P1w4d", 1.week().days(4)),
/// ("PT1m", 1.minute()),
/// ("PT0.0021s", 2.milliseconds().microseconds(100)),
/// ("PT0s", 0.seconds()),
/// ("P0d", 0.seconds()),
/// (
/// "P1y1m1dT1h1m1.1s",
/// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100),
/// ),
/// // Jiff's "friendly" format
/// ("40d", 40.days()),
/// ("40 days", 40.days()),
/// ("1y1d", 1.year().days(1)),
/// ("1yr 1d", 1.year().days(1)),
/// ("3d4h59m", 3.days().hours(4).minutes(59)),
/// ("3 days, 4 hours, 59 minutes", 3.days().hours(4).minutes(59)),
/// ("3d 4h 59m", 3.days().hours(4).minutes(59)),
/// ("2h30m", 2.hours().minutes(30)),
/// ("2h 30m", 2.hours().minutes(30)),
/// ("1mo", 1.month()),
/// ("1w", 1.week()),
/// ("1 week", 1.week()),
/// ("1w4d", 1.week().days(4)),
/// ("1 wk 4 days", 1.week().days(4)),
/// ("1m", 1.minute()),
/// ("0.0021s", 2.milliseconds().microseconds(100)),
/// ("0s", 0.seconds()),
/// ("0d", 0.seconds()),
/// ("0 days", 0.seconds()),
/// (
/// "1y1mo1d1h1m1.1s",
/// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100),
/// ),
/// (
/// "1yr 1mo 1day 1hr 1min 1.1sec",
/// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100),
/// ),
/// (
/// "1 year, 1 month, 1 day, 1 hour, 1 minute 1.1 seconds",
/// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100),
/// ),
/// (
/// "1 year, 1 month, 1 day, 01:01:01.1",
/// 1.year().months(1).days(1).hours(1).minutes(1).seconds(1).milliseconds(100),
/// ),
/// ];
/// for (string, span) in spans {
/// let parsed: Span = string.parse()?;
/// assert_eq!(
/// span.fieldwise(),
/// parsed.fieldwise(),
/// "result of parsing {string:?}",
/// );
/// }
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// For more details, see the [`fmt::temporal`](temporal) and
/// [`fmt::friendly`](friendly) modules.
///
/// [ISO 8601]: https://www.iso.org/iso-8601-date-and-time-format.html
///
/// # Comparisons
///
/// A `Span` does not implement the `PartialEq` or `Eq` traits. These traits
/// were implemented in an earlier version of Jiff, but they made it too
/// easy to introduce bugs. For example, `120.minutes()` and `2.hours()`
/// always correspond to the same total duration, but they have different
/// representations in memory and so didn't compare equivalent.
///
/// The reason why the `PartialEq` and `Eq` trait implementations do not do
/// comparisons with total duration is because it is fundamentally impossible
/// to do such comparisons without a reference date in all cases.
///
/// However, it is undeniably occasionally useful to do comparisons based
/// on the component fields, so long as such use cases can tolerate two
/// different spans comparing unequal even when their total durations are
/// equivalent. For example, many of the tests in Jiff (including the tests in
/// the documentation) work by comparing a `Span` to an expected result. This
/// is a good demonstration of when fieldwise comparisons are appropriate.
///
/// To do fieldwise comparisons with a span, use the [`Span::fieldwise`]
/// method. This method creates a [`SpanFieldwise`], which is just a `Span`
/// that implements `PartialEq` and `Eq` in a fieldwise manner. In other words,
/// it's a speed bump to ensure this is the kind of comparison you actually
/// want. For example:
///
/// ```
/// use jiff::ToSpan;
///
/// assert_ne!(1.hour().fieldwise(), 60.minutes().fieldwise());
/// // These also work since you only need one fieldwise span to do a compare:
/// assert_ne!(1.hour(), 60.minutes().fieldwise());
/// assert_ne!(1.hour().fieldwise(), 60.minutes());
/// ```
///
/// This is because doing true comparisons requires arithmetic and a relative
/// datetime in the general case, and which can fail due to overflow. This
/// operation is provided via [`Span::compare`]:
///
/// ```
/// use jiff::{civil::date, ToSpan};
///
/// // This doesn't need a reference date since it's only using time units.
/// assert_eq!(1.hour().compare(60.minutes())?, std::cmp::Ordering::Equal);
/// // But if you have calendar units, then you need a
/// // reference date at minimum:
/// assert!(1.month().compare(30.days()).is_err());
/// assert_eq!(
/// 1.month().compare((30.days(), date(2025, 6, 1)))?,
/// std::cmp::Ordering::Equal,
/// );
/// // A month can be a differing number of days!
/// assert_eq!(
/// 1.month().compare((30.days(), date(2025, 7, 1)))?,
/// std::cmp::Ordering::Greater,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Arithmetic
///
/// Spans can be added or subtracted via [`Span::checked_add`] and
/// [`Span::checked_sub`]:
///
/// ```
/// use jiff::{Span, ToSpan};
///
/// let span1 = 2.hours().minutes(20);
/// let span2: Span = "PT89400s".parse()?;
/// assert_eq!(span1.checked_add(span2)?, 27.hours().minutes(10).fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// When your spans involve calendar units, a relative datetime must be
/// provided. (Because, for example, 1 month from March 1 is 31 days, but
/// 1 month from April 1 is 30 days.)
///
/// ```
/// use jiff::{civil::date, Span, ToSpan};
///
/// let span1 = 2.years().months(6).days(20);
/// let span2 = 400.days();
/// assert_eq!(
/// span1.checked_add((span2, date(2023, 1, 1)))?,
/// 3.years().months(7).days(24).fieldwise(),
/// );
/// // The span changes when a leap year isn't included!
/// assert_eq!(
/// span1.checked_add((span2, date(2025, 1, 1)))?,
/// 3.years().months(7).days(23).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Rounding and balancing
///
/// Unlike datetimes, multiple distinct `Span` values can actually correspond
/// to the same duration of time. For example, all of the following correspond
/// to the same duration:
///
/// * 2 hours, 30 minutes
/// * 150 minutes
/// * 1 hour, 90 minutes
///
/// The first is said to be balanced. That is, its biggest non-zero unit cannot
/// be expressed in an integer number of units bigger than hours. But the
/// second is unbalanced because 150 minutes can be split up into hours and
/// minutes. We call this sort of span a "top-heavy" unbalanced span. The third
/// span is also unbalanced, but it's "bottom-heavy" and rarely used. Jiff
/// will generally only produce spans of the first two types. In particular,
/// most `Span` producing APIs accept a "largest" [`Unit`] parameter, and the
/// result can be said to be a span "balanced up to the largest unit provided."
///
/// Balanced and unbalanced spans can be switched between as needed via
/// the [`Span::round`] API by providing a rounding configuration with
/// [`SpanRound::largest`]` set:
///
/// ```
/// use jiff::{SpanRound, ToSpan, Unit};
///
/// let span = 2.hours().minutes(30);
/// let unbalanced = span.round(SpanRound::new().largest(Unit::Minute))?;
/// assert_eq!(unbalanced, 150.minutes().fieldwise());
/// let balanced = unbalanced.round(SpanRound::new().largest(Unit::Hour))?;
/// assert_eq!(balanced, 2.hours().minutes(30).fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Balancing can also be done as part of computing spans from two datetimes:
///
/// ```
/// use jiff::{civil::date, ToSpan, Unit};
///
/// let zdt1 = date(2024, 7, 7).at(15, 23, 0, 0).in_tz("America/New_York")?;
/// let zdt2 = date(2024, 11, 5).at(8, 0, 0, 0).in_tz("America/New_York")?;
///
/// // To make arithmetic reversible, the default largest unit for spans of
/// // time computed from zoned datetimes is hours:
/// assert_eq!(zdt1.until(&zdt2)?, 2_897.hour().minutes(37).fieldwise());
/// // But we can ask for the span to be balanced up to years:
/// assert_eq!(
/// zdt1.until((Unit::Year, &zdt2))?,
/// 3.months().days(28).hours(16).minutes(37).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// While the [`Span::round`] API does balancing, it also, of course, does
/// rounding as well. Rounding occurs when the smallest unit is set to
/// something bigger than [`Unit::Nanosecond`]:
///
/// ```
/// use jiff::{ToSpan, Unit};
///
/// let span = 2.hours().minutes(30);
/// assert_eq!(span.round(Unit::Hour)?, 3.hours().fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// When rounding spans with calendar units (years, months or weeks), then a
/// relative datetime is required:
///
/// ```
/// use jiff::{civil::date, SpanRound, ToSpan, Unit};
///
/// let span = 10.years().months(11);
/// let options = SpanRound::new()
/// .smallest(Unit::Year)
/// .relative(date(2024, 1, 1));
/// assert_eq!(span.round(options)?, 11.years().fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Days are not always 24 hours!
///
/// That is, a `Span` is made up of uniform and non-uniform units.
///
/// A uniform unit is a unit whose elapsed duration is always the same.
/// A non-uniform unit is a unit whose elapsed duration is not always the same.
/// There are two things that can impact the length of a non-uniform unit:
/// the calendar date and the time zone.
///
/// Years and months are always considered non-uniform units. For example,
/// 1 month from `2024-04-01` is 30 days, while 1 month from `2024-05-01` is
/// 31 days. Similarly for years because of leap years.
///
/// Hours, minutes, seconds, milliseconds, microseconds and nanoseconds are
/// always considered uniform units.
///
/// Days are only considered non-uniform when in the presence of a zone aware
/// datetime. A day can be more or less than 24 hours, and it can be balanced
/// up and down, but only when a relative zoned datetime is given. This
/// typically happens because of DST (daylight saving time), but can also occur
/// because of other time zone transitions too.
///
/// ```
/// use jiff::{civil::date, SpanRound, ToSpan, Unit};
///
/// // 2024-03-10 in New York was 23 hours long,
/// // because of a jump to DST at 2am.
/// let zdt = date(2024, 3, 9).at(21, 0, 0, 0).in_tz("America/New_York")?;
/// // Goes from days to hours:
/// assert_eq!(
/// 1.day().round(SpanRound::new().largest(Unit::Hour).relative(&zdt))?,
/// 23.hours().fieldwise(),
/// );
/// // Goes from hours to days:
/// assert_eq!(
/// 23.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?,
/// 1.day().fieldwise(),
/// );
/// // 24 hours is more than 1 day starting at this time:
/// assert_eq!(
/// 24.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?,
/// 1.day().hours(1).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// And similarly, days can be longer than 24 hours:
///
/// ```
/// use jiff::{civil::date, SpanRound, ToSpan, Unit};
///
/// // 2024-11-03 in New York was 25 hours long,
/// // because of a repetition of the 1 o'clock AM hour.
/// let zdt = date(2024, 11, 2).at(21, 0, 0, 0).in_tz("America/New_York")?;
/// // Goes from days to hours:
/// assert_eq!(
/// 1.day().round(SpanRound::new().largest(Unit::Hour).relative(&zdt))?,
/// 25.hours().fieldwise(),
/// );
/// // Goes from hours to days:
/// assert_eq!(
/// 25.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?,
/// 1.day().fieldwise(),
/// );
/// // 24 hours is less than 1 day starting at this time,
/// // so it stays in units of hours even though we ask
/// // for days (because 24 isn't enough hours to make
/// // 1 day):
/// assert_eq!(
/// 24.hours().round(SpanRound::new().largest(Unit::Day).relative(&zdt))?,
/// 24.hours().fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// The APIs on `Span` will otherwise treat days as non-uniform unless a
/// relative civil date is given, or there is an explicit opt-in to invariant
/// 24-hour days. For example:
///
/// ```
/// use jiff::{civil, SpanRelativeTo, ToSpan, Unit};
///
/// let span = 1.day();
///
/// // An error because days aren't always 24 hours:
/// assert_eq!(
/// span.total(Unit::Hour).unwrap_err().to_string(),
/// "using unit 'day' in a span or configuration requires that either \
/// a relative reference time be given or \
/// `SpanRelativeTo::days_are_24_hours()` is used to indicate \
/// invariant 24-hour days, but neither were provided",
/// );
/// // Opt into invariant 24 hour days without a relative date:
/// let marker = SpanRelativeTo::days_are_24_hours();
/// let hours = span.total((Unit::Hour, marker))?;
/// // Or use a relative civil date, and all days are 24 hours:
/// let date = civil::date(2020, 1, 1);
/// let hours = span.total((Unit::Hour, date))?;
/// assert_eq!(hours, 24.0);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// In Jiff, all weeks are 7 days. And generally speaking, weeks only appear in
/// a `Span` if they were explicitly put there by the caller or if they were
/// explicitly requested by the caller in an API. For example:
///
/// ```
/// use jiff::{civil::date, ToSpan, Unit};
///
/// let dt1 = date(2024, 1, 1).at(0, 0, 0, 0);
/// let dt2 = date(2024, 7, 16).at(0, 0, 0, 0);
/// // Default units go up to days.
/// assert_eq!(dt1.until(dt2)?, 197.days().fieldwise());
/// // No weeks, even though we requested up to year.
/// assert_eq!(dt1.until((Unit::Year, dt2))?, 6.months().days(15).fieldwise());
/// // We get weeks only when we ask for them.
/// assert_eq!(dt1.until((Unit::Week, dt2))?, 28.weeks().days(1).fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Integration with [`std::time::Duration`] and [`SignedDuration`]
///
/// While Jiff primarily uses a `Span` for doing arithmetic on datetimes,
/// one can convert between a `Span` and a [`std::time::Duration`] or a
/// [`SignedDuration`]. The main difference between them is that a `Span`
/// always keeps tracks of its individual units, and a `Span` can represent
/// non-uniform units like months. In contrast, `Duration` and `SignedDuration`
/// are always an exact elapsed amount of time. They don't distinguish between
/// `120 seconds` and `2 minutes`. And they can't represent the concept of
/// "months" because a month doesn't have a single fixed amount of time.
///
/// However, an exact duration is still useful in certain contexts. Beyond
/// that, it serves as an interoperability point due to the presence of an
/// unsigned exact duration type in the standard library. Because of that,
/// Jiff provides `TryFrom` trait implementations for converting to and from a
/// `std::time::Duration` (and, of course, a `SignedDuration`). For example, to
/// convert from a `std::time::Duration` to a `Span`:
///
/// ```
/// use std::time::Duration;
///
/// use jiff::{Span, ToSpan};
///
/// let duration = Duration::new(86_400, 123_456_789);
/// let span = Span::try_from(duration)?;
/// // A duration-to-span conversion always results in a span with
/// // non-zero units no bigger than seconds.
/// assert_eq!(
/// span.fieldwise(),
/// 86_400.seconds().milliseconds(123).microseconds(456).nanoseconds(789),
/// );
///
/// // Note that the conversion is fallible! For example:
/// assert!(Span::try_from(Duration::from_secs(u64::MAX)).is_err());
/// // At present, a Jiff `Span` can only represent a range of time equal to
/// // the range of time expressible via minimum and maximum Jiff timestamps.
/// // Which is roughly -9999-01-01 to 9999-12-31, or ~20,000 years.
/// assert!(Span::try_from(Duration::from_secs(999_999_999_999)).is_err());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// And to convert from a `Span` to a `std::time::Duration`:
///
/// ```
/// use std::time::Duration;
///
/// use jiff::{Span, ToSpan};
///
/// let span = 86_400.seconds()
/// .milliseconds(123)
/// .microseconds(456)
/// .nanoseconds(789);
/// let duration = Duration::try_from(span)?;
/// assert_eq!(duration, Duration::new(86_400, 123_456_789));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Note that an error will occur when converting a `Span` to a
/// `std::time::Duration` using the `TryFrom` trait implementation with units
/// bigger than hours:
///
/// ```
/// use std::time::Duration;
///
/// use jiff::ToSpan;
///
/// let span = 2.days().hours(10);
/// assert_eq!(
/// Duration::try_from(span).unwrap_err().to_string(),
/// "failed to convert span to duration without relative datetime \
/// (must use `Span::to_duration` instead): using unit 'day' in a \
/// span or configuration requires that either a relative reference \
/// time be given or `SpanRelativeTo::days_are_24_hours()` is used \
/// to indicate invariant 24-hour days, but neither were provided",
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Similar code can be written for `SignedDuration` as well.
///
/// If you need to convert such spans, then as the error suggests, you'll need
/// to use [`Span::to_duration`] with a relative date.
///
/// And note that since a `Span` is signed and a `std::time::Duration` is unsigned,
/// converting a negative `Span` to `std::time::Duration` will always fail. One can use
/// [`Span::signum`] to get the sign of the span and [`Span::abs`] to make the
/// span positive before converting it to a `Duration`:
///
/// ```
/// use std::time::Duration;
///
/// use jiff::{Span, ToSpan};
///
/// let span = -86_400.seconds().nanoseconds(1);
/// let (sign, duration) = (span.signum(), Duration::try_from(span.abs())?);
/// assert_eq!((sign, duration), (-1, Duration::new(86_400, 1)));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Or, consider using Jiff's own [`SignedDuration`] instead:
///
/// ```
/// # // See: https://github.com/rust-lang/rust/pull/121364
/// # #![allow(unknown_lints, ambiguous_negative_literals)]
/// use jiff::{SignedDuration, Span, ToSpan};
///
/// let span = -86_400.seconds().nanoseconds(1);
/// let duration = SignedDuration::try_from(span)?;
/// assert_eq!(duration, SignedDuration::new(-86_400, -1));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy)]
pub struct Span {
sign: Sign,
units: UnitSet,
years: t::SpanYears,
months: t::SpanMonths,
weeks: t::SpanWeeks,
days: t::SpanDays,
hours: t::SpanHours,
minutes: t::SpanMinutes,
seconds: t::SpanSeconds,
milliseconds: t::SpanMilliseconds,
microseconds: t::SpanMicroseconds,
nanoseconds: t::SpanNanoseconds,
}
/// Infallible routines for setting units on a `Span`.
///
/// These are useful when the units are determined by the programmer or when
/// they have been validated elsewhere. In general, use these routines when
/// constructing an invalid `Span` should be considered a bug in the program.
impl Span {
/// Creates a new span representing a zero duration. That is, a duration
/// in which no time has passed.
pub fn new() -> Span {
Span::default()
}
/// Set the number of years on this span. The value may be negative.
///
/// The fallible version of this method is [`Span::try_years`].
///
/// # Panics
///
/// This panics when the number of years is too small or too big.
/// The minimum value is `-19,998`.
/// The maximum value is `19,998`.
#[inline]
pub fn years<I: Into<i64>>(self, years: I) -> Span {
self.try_years(years).expect("value for years is out of bounds")
}
/// Set the number of months on this span. The value may be negative.
///
/// The fallible version of this method is [`Span::try_months`].
///
/// # Panics
///
/// This panics when the number of months is too small or too big.
/// The minimum value is `-239,976`.
/// The maximum value is `239,976`.
#[inline]
pub fn months<I: Into<i64>>(self, months: I) -> Span {
self.try_months(months).expect("value for months is out of bounds")
}
/// Set the number of weeks on this span. The value may be negative.
///
/// The fallible version of this method is [`Span::try_weeks`].
///
/// # Panics
///
/// This panics when the number of weeks is too small or too big.
/// The minimum value is `-1,043,497`.
/// The maximum value is `1_043_497`.
#[inline]
pub fn weeks<I: Into<i64>>(self, weeks: I) -> Span {
self.try_weeks(weeks).expect("value for weeks is out of bounds")
}
/// Set the number of days on this span. The value may be negative.
///
/// The fallible version of this method is [`Span::try_days`].
///
/// # Panics
///
/// This panics when the number of days is too small or too big.
/// The minimum value is `-7,304,484`.
/// The maximum value is `7,304,484`.
#[inline]
pub fn days<I: Into<i64>>(self, days: I) -> Span {
self.try_days(days).expect("value for days is out of bounds")
}
/// Set the number of hours on this span. The value may be negative.
///
/// The fallible version of this method is [`Span::try_hours`].
///
/// # Panics
///
/// This panics when the number of hours is too small or too big.
/// The minimum value is `-175,307,616`.
/// The maximum value is `175,307,616`.
#[inline]
pub fn hours<I: Into<i64>>(self, hours: I) -> Span {
self.try_hours(hours).expect("value for hours is out of bounds")
}
/// Set the number of minutes on this span. The value may be negative.
///
/// The fallible version of this method is [`Span::try_minutes`].
///
/// # Panics
///
/// This panics when the number of minutes is too small or too big.
/// The minimum value is `-10,518,456,960`.
/// The maximum value is `10,518,456,960`.
#[inline]
pub fn minutes<I: Into<i64>>(self, minutes: I) -> Span {
self.try_minutes(minutes).expect("value for minutes is out of bounds")
}
/// Set the number of seconds on this span. The value may be negative.
///
/// The fallible version of this method is [`Span::try_seconds`].
///
/// # Panics
///
/// This panics when the number of seconds is too small or too big.
/// The minimum value is `-631,107,417,600`.
/// The maximum value is `631,107,417,600`.
#[inline]
pub fn seconds<I: Into<i64>>(self, seconds: I) -> Span {
self.try_seconds(seconds).expect("value for seconds is out of bounds")
}
/// Set the number of milliseconds on this span. The value may be negative.
///
/// The fallible version of this method is [`Span::try_milliseconds`].
///
/// # Panics
///
/// This panics when the number of milliseconds is too small or too big.
/// The minimum value is `-631,107,417,600,000`.
/// The maximum value is `631,107,417,600,000`.
#[inline]
pub fn milliseconds<I: Into<i64>>(self, milliseconds: I) -> Span {
self.try_milliseconds(milliseconds)
.expect("value for milliseconds is out of bounds")
}
/// Set the number of microseconds on this span. The value may be negative.
///
/// The fallible version of this method is [`Span::try_microseconds`].
///
/// # Panics
///
/// This panics when the number of microseconds is too small or too big.
/// The minimum value is `-631,107,417,600,000,000`.
/// The maximum value is `631,107,417,600,000,000`.
#[inline]
pub fn microseconds<I: Into<i64>>(self, microseconds: I) -> Span {
self.try_microseconds(microseconds)
.expect("value for microseconds is out of bounds")
}
/// Set the number of nanoseconds on this span. The value may be negative.
///
/// Note that unlike all other units, a 64-bit integer number of
/// nanoseconds is not big enough to represent all possible spans between
/// all possible datetimes supported by Jiff. This means, for example, that
/// computing a span between two datetimes that are far enough apart _and_
/// requesting a largest unit of [`Unit::Nanosecond`], might return an
/// error due to lack of precision.
///
/// The fallible version of this method is [`Span::try_nanoseconds`].
///
/// # Panics
///
/// This panics when the number of nanoseconds is too small or too big.
/// The minimum value is `-9,223,372,036,854,775,807`.
/// The maximum value is `9,223,372,036,854,775,807`.
#[inline]
pub fn nanoseconds<I: Into<i64>>(self, nanoseconds: I) -> Span {
self.try_nanoseconds(nanoseconds)
.expect("value for nanoseconds is out of bounds")
}
}
/// Fallible methods for setting units on a `Span`.
///
/// These methods are useful when the span is made up of user provided values
/// that may not be in range.
impl Span {
/// Set the number of years on this span. The value may be negative.
///
/// The panicking version of this method is [`Span::years`].
///
/// # Errors
///
/// This returns an error when the number of years is too small or too big.
/// The minimum value is `-19,998`.
/// The maximum value is `19,998`.
#[inline]
pub fn try_years<I: Into<i64>>(self, years: I) -> Result<Span, Error> {
let years = t::SpanYears::try_new("years", years)?;
Ok(self.years_ranged(years))
}
/// Set the number of months on this span. The value may be negative.
///
/// The panicking version of this method is [`Span::months`].
///
/// # Errors
///
/// This returns an error when the number of months is too small or too big.
/// The minimum value is `-239,976`.
/// The maximum value is `239,976`.
#[inline]
pub fn try_months<I: Into<i64>>(self, months: I) -> Result<Span, Error> {
type Range = ri64<{ t::SpanMonths::MIN }, { t::SpanMonths::MAX }>;
let months = Range::try_new("months", months)?;
Ok(self.months_ranged(months))
}
/// Set the number of weeks on this span. The value may be negative.
///
/// The panicking version of this method is [`Span::weeks`].
///
/// # Errors
///
/// This returns an error when the number of weeks is too small or too big.
/// The minimum value is `-1,043,497`.
/// The maximum value is `1_043_497`.
#[inline]
pub fn try_weeks<I: Into<i64>>(self, weeks: I) -> Result<Span, Error> {
type Range = ri64<{ t::SpanWeeks::MIN }, { t::SpanWeeks::MAX }>;
let weeks = Range::try_new("weeks", weeks)?;
Ok(self.weeks_ranged(weeks))
}
/// Set the number of days on this span. The value may be negative.
///
/// The panicking version of this method is [`Span::days`].
///
/// # Errors
///
/// This returns an error when the number of days is too small or too big.
/// The minimum value is `-7,304,484`.
/// The maximum value is `7,304,484`.
#[inline]
pub fn try_days<I: Into<i64>>(self, days: I) -> Result<Span, Error> {
type Range = ri64<{ t::SpanDays::MIN }, { t::SpanDays::MAX }>;
let days = Range::try_new("days", days)?;
Ok(self.days_ranged(days))
}
/// Set the number of hours on this span. The value may be negative.
///
/// The panicking version of this method is [`Span::hours`].
///
/// # Errors
///
/// This returns an error when the number of hours is too small or too big.
/// The minimum value is `-175,307,616`.
/// The maximum value is `175,307,616`.
#[inline]
pub fn try_hours<I: Into<i64>>(self, hours: I) -> Result<Span, Error> {
type Range = ri64<{ t::SpanHours::MIN }, { t::SpanHours::MAX }>;
let hours = Range::try_new("hours", hours)?;
Ok(self.hours_ranged(hours))
}
/// Set the number of minutes on this span. The value may be negative.
///
/// The panicking version of this method is [`Span::minutes`].
///
/// # Errors
///
/// This returns an error when the number of minutes is too small or too big.
/// The minimum value is `-10,518,456,960`.
/// The maximum value is `10,518,456,960`.
#[inline]
pub fn try_minutes<I: Into<i64>>(self, minutes: I) -> Result<Span, Error> {
type Range = ri64<{ t::SpanMinutes::MIN }, { t::SpanMinutes::MAX }>;
let minutes = Range::try_new("minutes", minutes.into())?;
Ok(self.minutes_ranged(minutes))
}
/// Set the number of seconds on this span. The value may be negative.
///
/// The panicking version of this method is [`Span::seconds`].
///
/// # Errors
///
/// This returns an error when the number of seconds is too small or too big.
/// The minimum value is `-631,107,417,600`.
/// The maximum value is `631,107,417,600`.
#[inline]
pub fn try_seconds<I: Into<i64>>(self, seconds: I) -> Result<Span, Error> {
type Range = ri64<{ t::SpanSeconds::MIN }, { t::SpanSeconds::MAX }>;
let seconds = Range::try_new("seconds", seconds.into())?;
Ok(self.seconds_ranged(seconds))
}
/// Set the number of milliseconds on this span. The value may be negative.
///
/// The panicking version of this method is [`Span::milliseconds`].
///
/// # Errors
///
/// This returns an error when the number of milliseconds is too small or
/// too big.
/// The minimum value is `-631,107,417,600,000`.
/// The maximum value is `631,107,417,600,000`.
#[inline]
pub fn try_milliseconds<I: Into<i64>>(
self,
milliseconds: I,
) -> Result<Span, Error> {
type Range =
ri64<{ t::SpanMilliseconds::MIN }, { t::SpanMilliseconds::MAX }>;
let milliseconds =
Range::try_new("milliseconds", milliseconds.into())?;
Ok(self.milliseconds_ranged(milliseconds))
}
/// Set the number of microseconds on this span. The value may be negative.
///
/// The panicking version of this method is [`Span::microseconds`].
///
/// # Errors
///
/// This returns an error when the number of microseconds is too small or
/// too big.
/// The minimum value is `-631,107,417,600,000,000`.
/// The maximum value is `631,107,417,600,000,000`.
#[inline]
pub fn try_microseconds<I: Into<i64>>(
self,
microseconds: I,
) -> Result<Span, Error> {
type Range =
ri64<{ t::SpanMicroseconds::MIN }, { t::SpanMicroseconds::MAX }>;
let microseconds =
Range::try_new("microseconds", microseconds.into())?;
Ok(self.microseconds_ranged(microseconds))
}
/// Set the number of nanoseconds on this span. The value may be negative.
///
/// Note that unlike all other units, a 64-bit integer number of
/// nanoseconds is not big enough to represent all possible spans between
/// all possible datetimes supported by Jiff. This means, for example, that
/// computing a span between two datetimes that are far enough apart _and_
/// requesting a largest unit of [`Unit::Nanosecond`], might return an
/// error due to lack of precision.
///
/// The panicking version of this method is [`Span::nanoseconds`].
///
/// # Errors
///
/// This returns an error when the number of nanoseconds is too small or
/// too big.
/// The minimum value is `-9,223,372,036,854,775,807`.
/// The maximum value is `9,223,372,036,854,775,807`.
#[inline]
pub fn try_nanoseconds<I: Into<i64>>(
self,
nanoseconds: I,
) -> Result<Span, Error> {
type Range =
ri64<{ t::SpanNanoseconds::MIN }, { t::SpanNanoseconds::MAX }>;
let nanoseconds = Range::try_new("nanoseconds", nanoseconds.into())?;
Ok(self.nanoseconds_ranged(nanoseconds))
}
}
/// Routines for accessing the individual units in a `Span`.
impl Span {
/// Returns the number of year units in this span.
///
/// Note that this is not the same as the total number of years in the
/// span. To get that, you'll need to use either [`Span::round`] or
/// [`Span::total`].
///
/// # Example
///
/// ```
/// use jiff::{civil::date, ToSpan, Unit};
///
/// let span = 3.years().months(24);
/// assert_eq!(3, span.get_years());
/// assert_eq!(5.0, span.total((Unit::Year, date(2024, 1, 1)))?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn get_years(&self) -> i16 {
self.get_years_ranged().get()
}
/// Returns the number of month units in this span.
///
/// Note that this is not the same as the total number of months in the
/// span. To get that, you'll need to use either [`Span::round`] or
/// [`Span::total`].
///
/// # Example
///
/// ```
/// use jiff::{civil::date, ToSpan, Unit};
///
/// let span = 7.months().days(59);
/// assert_eq!(7, span.get_months());
/// assert_eq!(9.0, span.total((Unit::Month, date(2022, 6, 1)))?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn get_months(&self) -> i32 {
self.get_months_ranged().get()
}
/// Returns the number of week units in this span.
///
/// Note that this is not the same as the total number of weeks in the
/// span. To get that, you'll need to use either [`Span::round`] or
/// [`Span::total`].
///
/// # Example
///
/// ```
/// use jiff::{civil::date, ToSpan, Unit};
///
/// let span = 3.weeks().days(14);
/// assert_eq!(3, span.get_weeks());
/// assert_eq!(5.0, span.total((Unit::Week, date(2024, 1, 1)))?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn get_weeks(&self) -> i32 {
self.get_weeks_ranged().get()
}
/// Returns the number of day units in this span.
///
/// Note that this is not the same as the total number of days in the
/// span. To get that, you'll need to use either [`Span::round`] or
/// [`Span::total`].
///
/// # Example
///
/// ```
/// use jiff::{ToSpan, Unit, Zoned};
///
/// let span = 3.days().hours(47);
/// assert_eq!(3, span.get_days());
///
/// let zdt: Zoned = "2024-03-07[America/New_York]".parse()?;
/// assert_eq!(5.0, span.total((Unit::Day, &zdt))?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn get_days(&self) -> i32 {
self.get_days_ranged().get()
}
/// Returns the number of hour units in this span.
///
/// Note that this is not the same as the total number of hours in the
/// span. To get that, you'll need to use either [`Span::round`] or
/// [`Span::total`].
///
/// # Example
///
/// ```
/// use jiff::{ToSpan, Unit};
///
/// let span = 3.hours().minutes(120);
/// assert_eq!(3, span.get_hours());
/// assert_eq!(5.0, span.total(Unit::Hour)?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn get_hours(&self) -> i32 {
self.get_hours_ranged().get()
}
/// Returns the number of minute units in this span.
///
/// Note that this is not the same as the total number of minutes in the
/// span. To get that, you'll need to use either [`Span::round`] or
/// [`Span::total`].
///
/// # Example
///
/// ```
/// use jiff::{ToSpan, Unit};
///
/// let span = 3.minutes().seconds(120);
/// assert_eq!(3, span.get_minutes());
/// assert_eq!(5.0, span.total(Unit::Minute)?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn get_minutes(&self) -> i64 {
self.get_minutes_ranged().get()
}
/// Returns the number of second units in this span.
///
/// Note that this is not the same as the total number of seconds in the
/// span. To get that, you'll need to use either [`Span::round`] or
/// [`Span::total`].
///
/// # Example
///
/// ```
/// use jiff::{ToSpan, Unit};
///
/// let span = 3.seconds().milliseconds(2_000);
/// assert_eq!(3, span.get_seconds());
/// assert_eq!(5.0, span.total(Unit::Second)?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn get_seconds(&self) -> i64 {
self.get_seconds_ranged().get()
}
/// Returns the number of millisecond units in this span.
///
/// Note that this is not the same as the total number of milliseconds in
/// the span. To get that, you'll need to use either [`Span::round`] or
/// [`Span::total`].
///
/// # Example
///
/// ```
/// use jiff::{ToSpan, Unit};
///
/// let span = 3.milliseconds().microseconds(2_000);
/// assert_eq!(3, span.get_milliseconds());
/// assert_eq!(5.0, span.total(Unit::Millisecond)?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn get_milliseconds(&self) -> i64 {
self.get_milliseconds_ranged().get()
}
/// Returns the number of microsecond units in this span.
///
/// Note that this is not the same as the total number of microseconds in
/// the span. To get that, you'll need to use either [`Span::round`] or
/// [`Span::total`].
///
/// # Example
///
/// ```
/// use jiff::{ToSpan, Unit};
///
/// let span = 3.microseconds().nanoseconds(2_000);
/// assert_eq!(3, span.get_microseconds());
/// assert_eq!(5.0, span.total(Unit::Microsecond)?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn get_microseconds(&self) -> i64 {
self.get_microseconds_ranged().get()
}
/// Returns the number of nanosecond units in this span.
///
/// Note that this is not the same as the total number of nanoseconds in
/// the span. To get that, you'll need to use either [`Span::round`] or
/// [`Span::total`].
///
/// # Example
///
/// ```
/// use jiff::{ToSpan, Unit};
///
/// let span = 3.microseconds().nanoseconds(2_000);
/// assert_eq!(2_000, span.get_nanoseconds());
/// assert_eq!(5_000.0, span.total(Unit::Nanosecond)?);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn get_nanoseconds(&self) -> i64 {
self.get_nanoseconds_ranged().get()
}
}
/// Routines for manipulating, comparing and inspecting `Span` values.
impl Span {
/// Returns a new span that is the absolute value of this span.
///
/// If this span is zero or positive, then this is a no-op.
///
/// # Example
///
/// ```
/// use jiff::ToSpan;
///
/// let span = -100.seconds();
/// assert_eq!(span.to_string(), "-PT100S");
/// let span = span.abs();
/// assert_eq!(span.to_string(), "PT100S");
/// ```
#[inline]
pub fn abs(self) -> Span {
if self.is_zero() {
return self;
}
Span { sign: ri8::N::<1>(), ..self }
}
/// Returns a new span that negates this span.
///
/// If this span is zero, then this is a no-op. If this span is negative,
/// then the returned span is positive. If this span is positive, then
/// the returned span is negative.
///
/// # Example
///
/// ```
/// use jiff::ToSpan;
///
/// let span = 100.days();
/// assert_eq!(span.to_string(), "P100D");
/// let span = span.negate();
/// assert_eq!(span.to_string(), "-P100D");
/// ```
///
/// # Example: available via the negation operator
///
/// This routine can also be used via `-`:
///
/// ```
/// use jiff::ToSpan;
///
/// let span = 100.days();
/// assert_eq!(span.to_string(), "P100D");
/// let span = -span;
/// assert_eq!(span.to_string(), "-P100D");
/// ```
#[inline]
pub fn negate(self) -> Span {
Span { sign: -self.sign, ..self }
}
/// Returns the "sign number" or "signum" of this span.
///
/// The number returned is `-1` when this span is negative,
/// `0` when this span is zero and `1` when this span is positive.
#[inline]
pub fn signum(self) -> i8 {
self.sign.signum().get()
}
/// Returns true if and only if this span is positive.
///
/// This returns false when the span is zero or negative.
///
/// # Example
///
/// ```
/// use jiff::ToSpan;
///
/// assert!(!2.months().is_negative());
/// assert!((-2.months()).is_negative());
/// ```
#[inline]
pub fn is_positive(self) -> bool {
self.get_sign_ranged() > 0
}
/// Returns true if and only if this span is negative.
///
/// This returns false when the span is zero or positive.
///
/// # Example
///
/// ```
/// use jiff::ToSpan;
///
/// assert!(!2.months().is_negative());
/// assert!((-2.months()).is_negative());
/// ```
#[inline]
pub fn is_negative(self) -> bool {
self.get_sign_ranged() < 0
}
/// Returns true if and only if every field in this span is set to `0`.
///
/// # Example
///
/// ```
/// use jiff::{Span, ToSpan};
///
/// assert!(Span::new().is_zero());
/// assert!(Span::default().is_zero());
/// assert!(0.seconds().is_zero());
/// assert!(!0.seconds().seconds(1).is_zero());
/// assert!(0.seconds().seconds(1).seconds(0).is_zero());
/// ```
#[inline]
pub fn is_zero(self) -> bool {
self.sign == 0
}
/// Returns this `Span` as a value with a type that implements the
/// `Hash`, `Eq` and `PartialEq` traits in a fieldwise fashion.
///
/// A `SpanFieldwise` is meant to make it easy to compare two spans in a
/// "dumb" way based purely on its unit values. This is distinct from
/// something like [`Span::compare`] that performs a comparison on the
/// actual elapsed time of two spans.
///
/// It is generally discouraged to use `SpanFieldwise` since spans that
/// represent an equivalent elapsed amount of time may compare unequal.
/// However, in some cases, it is useful to be able to assert precise
/// field values. For example, Jiff itself makes heavy use of fieldwise
/// comparisons for tests.
///
/// # Example: the difference between `SpanFieldwise` and `Span::compare`
///
/// In short, `SpanFieldwise` considers `2 hours` and `120 minutes` to be
/// distinct values, but `Span::compare` considers them to be equivalent:
///
/// ```
/// use std::cmp::Ordering;
/// use jiff::ToSpan;
///
/// assert_ne!(120.minutes().fieldwise(), 2.hours().fieldwise());
/// assert_eq!(120.minutes().compare(2.hours())?, Ordering::Equal);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn fieldwise(self) -> SpanFieldwise {
SpanFieldwise(self)
}
/// Multiplies each field in this span by a given integer.
///
/// If this would cause any individual field in this span to overflow, then
/// this returns an error.
///
/// # Example
///
/// ```
/// use jiff::ToSpan;
///
/// let span = 4.days().seconds(8);
/// assert_eq!(span.checked_mul(2)?, 8.days().seconds(16).fieldwise());
/// assert_eq!(span.checked_mul(-3)?, -12.days().seconds(24).fieldwise());
/// // Notice that no re-balancing is done. It's "just" multiplication.
/// assert_eq!(span.checked_mul(10)?, 40.days().seconds(80).fieldwise());
///
/// let span = 10_000.years();
/// // too big!
/// assert!(span.checked_mul(3).is_err());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: available via the multiplication operator
///
/// This method can be used via the `*` operator. Note though that a panic
/// happens on overflow.
///
/// ```
/// use jiff::ToSpan;
///
/// let span = 4.days().seconds(8);
/// assert_eq!(span * 2, 8.days().seconds(16).fieldwise());
/// assert_eq!(2 * span, 8.days().seconds(16).fieldwise());
/// assert_eq!(span * -3, -12.days().seconds(24).fieldwise());
/// assert_eq!(-3 * span, -12.days().seconds(24).fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn checked_mul(mut self, rhs: i64) -> Result<Span, Error> {
if rhs == 0 {
return Ok(Span::default());
} else if rhs == 1 {
return Ok(self);
}
self.sign *= t::Sign::try_new("span factor", rhs.signum())
.expect("signum fits in ri8");
// This is all somewhat odd, but since each of our span fields uses
// a different primitive representation and range of allowed values,
// we only seek to perform multiplications when they will actually
// do something. Otherwise, we risk multiplying the mins/maxs of a
// ranged integer and causing a spurious panic. Basically, the idea
// here is the allowable values for our multiple depend on what we're
// actually going to multiply with it. If our span has non-zero years,
// then our multiple can't exceed the bounds of `SpanYears`, otherwise
// it is guaranteed to overflow.
if self.years != 0 {
let rhs = t::SpanYears::try_new("years multiple", rhs)?;
self.years = self.years.try_checked_mul("years", rhs.abs())?;
}
if self.months != 0 {
let rhs = t::SpanMonths::try_new("months multiple", rhs)?;
self.months = self.months.try_checked_mul("months", rhs.abs())?;
}
if self.weeks != 0 {
let rhs = t::SpanWeeks::try_new("weeks multiple", rhs)?;
self.weeks = self.weeks.try_checked_mul("weeks", rhs.abs())?;
}
if self.days != 0 {
let rhs = t::SpanDays::try_new("days multiple", rhs)?;
self.days = self.days.try_checked_mul("days", rhs.abs())?;
}
if self.hours != 0 {
let rhs = t::SpanHours::try_new("hours multiple", rhs)?;
self.hours = self.hours.try_checked_mul("hours", rhs.abs())?;
}
if self.minutes != 0 {
let rhs = t::SpanMinutes::try_new("minutes multiple", rhs)?;
self.minutes =
self.minutes.try_checked_mul("minutes", rhs.abs())?;
}
if self.seconds != 0 {
let rhs = t::SpanSeconds::try_new("seconds multiple", rhs)?;
self.seconds =
self.seconds.try_checked_mul("seconds", rhs.abs())?;
}
if self.milliseconds != 0 {
let rhs =
t::SpanMilliseconds::try_new("milliseconds multiple", rhs)?;
self.milliseconds = self
.milliseconds
.try_checked_mul("milliseconds", rhs.abs())?;
}
if self.microseconds != 0 {
let rhs =
t::SpanMicroseconds::try_new("microseconds multiple", rhs)?;
self.microseconds = self
.microseconds
.try_checked_mul("microseconds", rhs.abs())?;
}
if self.nanoseconds != 0 {
let rhs =
t::SpanNanoseconds::try_new("nanoseconds multiple", rhs)?;
self.nanoseconds =
self.nanoseconds.try_checked_mul("nanoseconds", rhs.abs())?;
}
// N.B. We don't need to update `self.units` here since it shouldn't
// change. The only way it could is if a unit goes from zero to
// non-zero (which can't happen, because multiplication by zero is
// always zero), or if a unit goes from non-zero to zero. That also
// can't happen because we handle the case of the factor being zero
// specially above, and it returns a `Span` will all units zero
// correctly.
Ok(self)
}
/// Adds a span to this one and returns the sum as a new span.
///
/// When adding a span with units greater than hours, callers must provide
/// a relative datetime to anchor the spans.
///
/// Arithmetic proceeds as specified in [RFC 5545]. Bigger units are
/// added together before smaller units.
///
/// This routine accepts anything that implements `Into<SpanArithmetic>`.
/// There are some trait implementations that make using this routine
/// ergonomic:
///
/// * `From<Span> for SpanArithmetic` adds the given span to this one.
/// * `From<(Span, civil::Date)> for SpanArithmetic` adds the given
/// span to this one relative to the given date. There are also `From`
/// implementations for `civil::DateTime` and `Zoned`.
///
/// This also works with different duration types, such as
/// [`SignedDuration`] and [`std::time::Duration`], via additional trait
/// implementations:
///
/// * `From<SignedDuration> for SpanArithmetic` adds the given duration to
/// this one.
/// * `From<(SignedDuration, civil::Date)> for SpanArithmetic` adds the
/// given duration to this one relative to the given date. There are also
/// `From` implementations for `civil::DateTime` and `Zoned`.
///
/// And similarly for `std::time::Duration`.
///
/// Adding a negative span is equivalent to subtracting its absolute value.
///
/// The largest non-zero unit in the span returned is at most the largest
/// non-zero unit among the two spans being added. For an absolute
/// duration, its "largest" unit is considered to be nanoseconds.
///
/// The sum returned is automatically re-balanced so that the span is not
/// "bottom heavy."
///
/// [RFC 5545]: https://datatracker.ietf.org/doc/html/rfc5545
///
/// # Errors
///
/// This returns an error when adding the two spans would overflow any
/// individual field of a span. This will also return an error if either
/// of the spans have non-zero units of days or greater and no relative
/// reference time is provided.
///
/// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special
/// marker instead of providing a relative civil date to indicate that
/// all days should be 24 hours long. This also results in treating all
/// weeks as seven 24 hour days (168 hours).
///
/// # Example
///
/// ```
/// use jiff::ToSpan;
///
/// assert_eq!(
/// 1.hour().checked_add(30.minutes())?,
/// 1.hour().minutes(30).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: re-balancing
///
/// This example shows how units are automatically rebalanced into bigger
/// units when appropriate.
///
/// ```
/// use jiff::ToSpan;
///
/// let span1 = 2.hours().minutes(59);
/// let span2 = 2.minutes();
/// assert_eq!(span1.checked_add(span2)?, 3.hours().minutes(1).fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: days are not assumed to be 24 hours by default
///
/// When dealing with units involving days or weeks, one must either
/// provide a relative datetime (shown in the following examples) or opt
/// into invariant 24 hour days:
///
/// ```
/// use jiff::{SpanRelativeTo, ToSpan};
///
/// let span1 = 2.days().hours(23);
/// let span2 = 2.hours();
/// assert_eq!(
/// span1.checked_add((span2, SpanRelativeTo::days_are_24_hours()))?,
/// 3.days().hours(1).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: adding spans with calendar units
///
/// If you try to add two spans with calendar units without specifying a
/// relative datetime, you'll get an error:
///
/// ```
/// use jiff::ToSpan;
///
/// let span1 = 1.month().days(15);
/// let span2 = 15.days();
/// assert!(span1.checked_add(span2).is_err());
/// ```
///
/// A relative datetime is needed because calendar spans may correspond to
/// different actual durations depending on where the span begins:
///
/// ```
/// use jiff::{civil::date, ToSpan};
///
/// let span1 = 1.month().days(15);
/// let span2 = 15.days();
/// // 1 month from March 1 is 31 days...
/// assert_eq!(
/// span1.checked_add((span2, date(2008, 3, 1)))?,
/// 2.months().fieldwise(),
/// );
/// // ... but 1 month from April 1 is 30 days!
/// assert_eq!(
/// span1.checked_add((span2, date(2008, 4, 1)))?,
/// 1.month().days(30).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: error on overflow
///
/// Adding two spans can overflow, and this will result in an error:
///
/// ```
/// use jiff::ToSpan;
///
/// assert!(19_998.years().checked_add(1.year()).is_err());
/// ```
///
/// # Example: adding an absolute duration to a span
///
/// This shows how one isn't limited to just adding two spans together.
/// One can also add absolute durations to a span.
///
/// ```
/// use std::time::Duration;
///
/// use jiff::{SignedDuration, ToSpan};
///
/// assert_eq!(
/// 1.hour().checked_add(SignedDuration::from_mins(30))?,
/// 1.hour().minutes(30).fieldwise(),
/// );
/// assert_eq!(
/// 1.hour().checked_add(Duration::from_secs(30 * 60))?,
/// 1.hour().minutes(30).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Note that even when adding an absolute duration, if the span contains
/// non-uniform units, you still need to provide a relative datetime:
///
/// ```
/// use jiff::{civil::date, SignedDuration, ToSpan};
///
/// // Might be 1 month or less than 1 month!
/// let dur = SignedDuration::from_hours(30 * 24);
/// // No relative datetime provided even when the span
/// // contains non-uniform units results in an error.
/// assert!(1.month().checked_add(dur).is_err());
/// // In this case, 30 days is one month (April).
/// assert_eq!(
/// 1.month().checked_add((dur, date(2024, 3, 1)))?,
/// 2.months().fieldwise(),
/// );
/// // In this case, 30 days is less than one month (May).
/// assert_eq!(
/// 1.month().checked_add((dur, date(2024, 4, 1)))?,
/// 1.month().days(30).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn checked_add<'a, A: Into<SpanArithmetic<'a>>>(
&self,
options: A,
) -> Result<Span, Error> {
let options: SpanArithmetic<'_> = options.into();
options.checked_add(*self)
}
#[inline]
fn checked_add_span<'a>(
&self,
relative: Option<SpanRelativeTo<'a>>,
span: &Span,
) -> Result<Span, Error> {
let (span1, span2) = (*self, *span);
let unit = span1.largest_unit().max(span2.largest_unit());
let start = match relative {
Some(r) => match r.to_relative(unit)? {
None => return span1.checked_add_invariant(unit, &span2),
Some(r) => r,
},
None => {
requires_relative_date_err(unit)?;
return span1.checked_add_invariant(unit, &span2);
}
};
let mid = start.checked_add(span1)?;
let end = mid.checked_add(span2)?;
start.until(unit, &end)
}
#[inline]
fn checked_add_duration<'a>(
&self,
relative: Option<SpanRelativeTo<'a>>,
duration: SignedDuration,
) -> Result<Span, Error> {
let (span1, dur2) = (*self, duration);
let unit = span1.largest_unit();
let start = match relative {
Some(r) => match r.to_relative(unit)? {
None => {
return span1.checked_add_invariant_duration(unit, dur2)
}
Some(r) => r,
},
None => {
requires_relative_date_err(unit)?;
return span1.checked_add_invariant_duration(unit, dur2);
}
};
let mid = start.checked_add(span1)?;
let end = mid.checked_add_duration(dur2)?;
start.until(unit, &end)
}
/// Like `checked_add`, but only applies for invariant units. That is,
/// when *both* spans whose non-zero units are all hours or smaller
/// (or weeks or smaller with the "days are 24 hours" marker).
#[inline]
fn checked_add_invariant(
&self,
unit: Unit,
span: &Span,
) -> Result<Span, Error> {
assert!(unit <= Unit::Week);
let nanos1 = self.to_invariant_nanoseconds();
let nanos2 = span.to_invariant_nanoseconds();
let sum = nanos1 + nanos2;
Span::from_invariant_nanoseconds(unit, sum)
}
/// Like `checked_add_invariant`, but adds an absolute duration.
#[inline]
fn checked_add_invariant_duration(
&self,
unit: Unit,
duration: SignedDuration,
) -> Result<Span, Error> {
assert!(unit <= Unit::Week);
let nanos1 = self.to_invariant_nanoseconds();
let nanos2 = t::NoUnits96::new_unchecked(duration.as_nanos());
let sum = nanos1 + nanos2;
Span::from_invariant_nanoseconds(unit, sum)
}
/// This routine is identical to [`Span::checked_add`] with the given
/// duration negated.
///
/// # Errors
///
/// This has the same error conditions as [`Span::checked_add`].
///
/// # Example
///
/// ```
/// use std::time::Duration;
///
/// use jiff::{SignedDuration, ToSpan};
///
/// assert_eq!(
/// 1.hour().checked_sub(30.minutes())?,
/// 30.minutes().fieldwise(),
/// );
/// assert_eq!(
/// 1.hour().checked_sub(SignedDuration::from_mins(30))?,
/// 30.minutes().fieldwise(),
/// );
/// assert_eq!(
/// 1.hour().checked_sub(Duration::from_secs(30 * 60))?,
/// 30.minutes().fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn checked_sub<'a, A: Into<SpanArithmetic<'a>>>(
&self,
options: A,
) -> Result<Span, Error> {
let mut options: SpanArithmetic<'_> = options.into();
options.duration = options.duration.checked_neg()?;
options.checked_add(*self)
}
/// Compares two spans in terms of how long they are. Negative spans are
/// considered shorter than the zero span.
///
/// Two spans compare equal when they correspond to the same duration
/// of time, even if their individual fields are different. This is in
/// contrast to the `Eq` trait implementation of `Span`, which performs
/// exact field-wise comparisons. This split exists because the comparison
/// provided by this routine is "heavy" in that it may need to do
/// datetime arithmetic to return an answer. In contrast, the `Eq` trait
/// implementation is "cheap."
///
/// This routine accepts anything that implements `Into<SpanCompare>`.
/// There are some trait implementations that make using this routine
/// ergonomic:
///
/// * `From<Span> for SpanCompare` compares the given span to this one.
/// * `From<(Span, civil::Date)> for SpanArithmetic` compares the given
/// span to this one relative to the given date. There are also `From`
/// implementations for `civil::DateTime` and `Zoned`.
///
/// # Errors
///
/// If either of the spans being compared have a non-zero calendar unit
/// (units bigger than hours), then this routine requires a relative
/// datetime. If one is not provided, then an error is returned.
///
/// An error can also occur when adding either span to the relative
/// datetime given results in overflow.
///
/// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special
/// marker instead of providing a relative civil date to indicate that
/// all days should be 24 hours long. This also results in treating all
/// weeks as seven 24 hour days (168 hours).
///
/// # Example
///
/// ```
/// use jiff::ToSpan;
///
/// let span1 = 3.hours();
/// let span2 = 180.minutes();
/// assert_eq!(span1.compare(span2)?, std::cmp::Ordering::Equal);
/// // But notice that the two spans are not equal via `Eq`:
/// assert_ne!(span1.fieldwise(), span2.fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: negative spans are less than zero
///
/// ```
/// use jiff::ToSpan;
///
/// let span1 = -1.second();
/// let span2 = 0.seconds();
/// assert_eq!(span1.compare(span2)?, std::cmp::Ordering::Less);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: comparisons take DST into account
///
/// When a relative datetime is time zone aware, then DST is taken into
/// account when comparing spans:
///
/// ```
/// use jiff::{civil, ToSpan, Zoned};
///
/// let span1 = 79.hours().minutes(10);
/// let span2 = 3.days().hours(7).seconds(630);
/// let span3 = 3.days().hours(6).minutes(50);
///
/// let relative: Zoned = "2020-11-01T00-07[America/Los_Angeles]".parse()?;
/// let mut spans = [span1, span2, span3];
/// spans.sort_by(|s1, s2| s1.compare((s2, &relative)).unwrap());
/// assert_eq!(
/// spans.map(|sp| sp.fieldwise()),
/// [span1.fieldwise(), span3.fieldwise(), span2.fieldwise()],
/// );
///
/// // Compare with the result of sorting without taking DST into account.
/// // We can that by providing a relative civil date:
/// let relative = civil::date(2020, 11, 1);
/// spans.sort_by(|s1, s2| s1.compare((s2, relative)).unwrap());
/// assert_eq!(
/// spans.map(|sp| sp.fieldwise()),
/// [span3.fieldwise(), span1.fieldwise(), span2.fieldwise()],
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// See the examples for [`Span::total`] if you want to sort spans without
/// an `unwrap()` call.
#[inline]
pub fn compare<'a, C: Into<SpanCompare<'a>>>(
&self,
options: C,
) -> Result<Ordering, Error> {
let options: SpanCompare<'_> = options.into();
options.compare(*self)
}
/// Returns a floating point number representing the total number of a
/// specific unit (as given) in this span. If the span is not evenly
/// divisible by the requested units, then the number returned may have a
/// fractional component.
///
/// This routine accepts anything that implements `Into<SpanTotal>`. There
/// are some trait implementations that make using this routine ergonomic:
///
/// * `From<Unit> for SpanTotal` computes a total for the given unit in
/// this span.
/// * `From<(Unit, civil::Date)> for SpanTotal` computes a total for the
/// given unit in this span, relative to the given date. There are also
/// `From` implementations for `civil::DateTime` and `Zoned`.
///
/// # Errors
///
/// If this span has any non-zero calendar unit (units bigger than hours),
/// then this routine requires a relative datetime. If one is not provided,
/// then an error is returned.
///
/// An error can also occur when adding the span to the relative
/// datetime given results in overflow.
///
/// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special
/// marker instead of providing a relative civil date to indicate that
/// all days should be 24 hours long. This also results in treating all
/// weeks as seven 24 hour days (168 hours).
///
/// # Example
///
/// This example shows how to find the number of seconds in a particular
/// span:
///
/// ```
/// use jiff::{ToSpan, Unit};
///
/// let span = 3.hours().minutes(10);
/// assert_eq!(span.total(Unit::Second)?, 11_400.0);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: 24 hour days
///
/// This shows how to find the total number of 24 hour days in
/// `123,456,789` seconds.
///
/// ```
/// use jiff::{SpanTotal, ToSpan, Unit};
///
/// let span = 123_456_789.seconds();
/// assert_eq!(
/// span.total(SpanTotal::from(Unit::Day).days_are_24_hours())?,
/// 1428.8980208333332,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: DST is taken into account
///
/// The month of March 2024 in `America/New_York` had 31 days, but one of
/// those days was 23 hours long due a transition into daylight saving
/// time:
///
/// ```
/// use jiff::{civil::date, ToSpan, Unit};
///
/// let span = 744.hours();
/// let relative = date(2024, 3, 1).in_tz("America/New_York")?;
/// // Because of the short day, 744 hours is actually a little *more* than
/// // 1 month starting from 2024-03-01.
/// assert_eq!(span.total((Unit::Month, &relative))?, 1.0013888888888889);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Now compare what happens when the relative datetime is civil and not
/// time zone aware:
///
/// ```
/// use jiff::{civil::date, ToSpan, Unit};
///
/// let span = 744.hours();
/// let relative = date(2024, 3, 1);
/// assert_eq!(span.total((Unit::Month, relative))?, 1.0);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: infallible sorting
///
/// The sorting example in [`Span::compare`] has to use `unwrap()` in
/// its `sort_by(..)` call because `Span::compare` may fail and there
/// is no "fallible" sorting routine in Rust's standard library (as of
/// 2024-07-07). While the ways in which `Span::compare` can fail for
/// a valid configuration are limited to overflow for "extreme" values, it
/// is possible to sort spans infallibly by computing floating point
/// representations for each span up-front:
///
/// ```
/// use jiff::{civil::Date, ToSpan, Unit, Zoned};
///
/// let span1 = 79.hours().minutes(10);
/// let span2 = 3.days().hours(7).seconds(630);
/// let span3 = 3.days().hours(6).minutes(50);
///
/// let relative: Zoned = "2020-11-01T00-07[America/Los_Angeles]".parse()?;
/// let mut spans = [
/// (span1, span1.total((Unit::Day, &relative))?),
/// (span2, span2.total((Unit::Day, &relative))?),
/// (span3, span3.total((Unit::Day, &relative))?),
/// ];
/// spans.sort_by(|&(_, total1), &(_, total2)| total1.total_cmp(&total2));
/// assert_eq!(
/// spans.map(|(sp, _)| sp.fieldwise()),
/// [span1.fieldwise(), span3.fieldwise(), span2.fieldwise()],
/// );
///
/// // Compare with the result of sorting without taking DST into account.
/// // We do that here by providing a relative civil date.
/// let relative: Date = "2020-11-01".parse()?;
/// let mut spans = [
/// (span1, span1.total((Unit::Day, relative))?),
/// (span2, span2.total((Unit::Day, relative))?),
/// (span3, span3.total((Unit::Day, relative))?),
/// ];
/// spans.sort_by(|&(_, total1), &(_, total2)| total1.total_cmp(&total2));
/// assert_eq!(
/// spans.map(|(sp, _)| sp.fieldwise()),
/// [span3.fieldwise(), span1.fieldwise(), span2.fieldwise()],
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn total<'a, T: Into<SpanTotal<'a>>>(
&self,
options: T,
) -> Result<f64, Error> {
let options: SpanTotal<'_> = options.into();
options.total(*self)
}
/// Returns a new span that is balanced and rounded.
///
/// Rounding a span has a number of parameters, all of which are optional.
/// When no parameters are given, then no rounding or balancing is done,
/// and the span as given is returned. That is, it's a no-op.
///
/// The parameters are, in brief:
///
/// * [`SpanRound::largest`] sets the largest [`Unit`] that is allowed to
/// be non-zero in the span returned. When _only_ the largest unit is set,
/// rounding itself doesn't occur and instead the span is merely balanced.
/// * [`SpanRound::smallest`] sets the smallest [`Unit`] that is allowed to
/// be non-zero in the span returned. By default, it is set to
/// [`Unit::Nanosecond`], i.e., no rounding occurs. When the smallest unit
/// is set to something bigger than nanoseconds, then the non-zero units
/// in the span smaller than the smallest unit are used to determine how
/// the span should be rounded. For example, rounding `1 hour 59 minutes`
/// to the nearest hour using the default rounding mode would produce
/// `2 hours`.
/// * [`SpanRound::mode`] determines how to handle the remainder when
/// rounding. The default is [`RoundMode::HalfExpand`], which corresponds
/// to how you were taught to round in school. Alternative modes, like
/// [`RoundMode::Trunc`], exist too. For example, a truncating rounding of
/// `1 hour 59 minutes` to the nearest hour would produce `1 hour`.
/// * [`SpanRound::increment`] sets the rounding granularity to use for
/// the configured smallest unit. For example, if the smallest unit is
/// minutes and the increment is 5, then the span returned will always have
/// its minute units set to a multiple of `5`.
/// * [`SpanRound::relative`] sets the datetime from which to interpret the
/// span. This is required when rounding spans with calendar units (years,
/// months or weeks). When a relative datetime is time zone aware, then
/// rounding accounts for the fact that not all days are 24 hours long.
/// When a relative datetime is omitted or is civil (not time zone aware),
/// then days are always 24 hours long.
///
/// # Constructing a [`SpanRound`]
///
/// This routine accepts anything that implements `Into<SpanRound>`. There
/// are a few key trait implementations that make this convenient:
///
/// * `From<Unit> for SpanRound` will construct a rounding configuration
/// where the smallest unit is set to the one given.
/// * `From<(Unit, i64)> for SpanRound` will construct a rounding
/// configuration where the smallest unit and the rounding increment are
/// set to the ones given.
///
/// To set other options (like the largest unit, the rounding mode and the
/// relative datetime), one must explicitly create a `SpanRound` and pass
/// it to this routine.
///
/// # Errors
///
/// In general, there are two main ways for rounding to fail: an improper
/// configuration like trying to round a span with calendar units but
/// without a relative datetime, or when overflow occurs. Overflow can
/// occur when the span, added to the relative datetime if given, would
/// exceed the minimum or maximum datetime values. Overflow can also occur
/// if the span is too big to fit into the requested unit configuration.
/// For example, a span like `19_998.years()` cannot be represented with a
/// 64-bit integer number of nanoseconds.
///
/// Callers may use [`SpanArithmetic::days_are_24_hours`] as a special
/// marker instead of providing a relative civil date to indicate that
/// all days should be 24 hours long. This also results in treating all
/// weeks as seven 24 hour days (168 hours).
///
/// # Example: balancing
///
/// This example demonstrates balancing, not rounding. And in particular,
/// this example shows how to balance a span as much as possible (i.e.,
/// with units of hours or smaller) without needing to specify a relative
/// datetime:
///
/// ```
/// use jiff::{SpanRound, ToSpan, Unit};
///
/// let span = 123_456_789_123_456_789i64.nanoseconds();
/// assert_eq!(
/// span.round(SpanRound::new().largest(Unit::Hour))?.fieldwise(),
/// 34_293.hours().minutes(33).seconds(9)
/// .milliseconds(123).microseconds(456).nanoseconds(789),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Or you can opt into invariant 24-hour days (and 7-day weeks) without a
/// relative date with [`SpanRound::days_are_24_hours`]:
///
/// ```
/// use jiff::{SpanRound, ToSpan, Unit};
///
/// let span = 123_456_789_123_456_789i64.nanoseconds();
/// assert_eq!(
/// span.round(
/// SpanRound::new().largest(Unit::Day).days_are_24_hours(),
/// )?.fieldwise(),
/// 1_428.days()
/// .hours(21).minutes(33).seconds(9)
/// .milliseconds(123).microseconds(456).nanoseconds(789),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: balancing and rounding
///
/// This example is like the one before it, but where we round to the
/// nearest second:
///
/// ```
/// use jiff::{SpanRound, ToSpan, Unit};
///
/// let span = 123_456_789_123_456_789i64.nanoseconds();
/// assert_eq!(
/// span.round(SpanRound::new().largest(Unit::Hour).smallest(Unit::Second))?,
/// 34_293.hours().minutes(33).seconds(9).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Or, just rounding to the nearest hour can make use of the
/// `From<Unit> for SpanRound` trait implementation:
///
/// ```
/// use jiff::{ToSpan, Unit};
///
/// let span = 123_456_789_123_456_789i64.nanoseconds();
/// assert_eq!(span.round(Unit::Hour)?, 34_294.hours().fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: balancing with a relative datetime
///
/// Even with calendar units, so long as a relative datetime is provided,
/// it's easy to turn days into bigger units:
///
/// ```
/// use jiff::{civil::date, SpanRound, ToSpan, Unit};
///
/// let span = 1_000.days();
/// let relative = date(2000, 1, 1);
/// let options = SpanRound::new().largest(Unit::Year).relative(relative);
/// assert_eq!(span.round(options)?, 2.years().months(8).days(26).fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: round to the nearest half-hour
///
/// ```
/// use jiff::{Span, ToSpan, Unit};
///
/// let span: Span = "PT23h50m3.123s".parse()?;
/// assert_eq!(span.round((Unit::Minute, 30))?, 24.hours().fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: yearly quarters in a span
///
/// This example shows how to find how many full 3 month quarters are in a
/// particular span of time.
///
/// ```
/// use jiff::{civil::date, RoundMode, SpanRound, ToSpan, Unit};
///
/// let span1 = 10.months().days(15);
/// let round = SpanRound::new()
/// .smallest(Unit::Month)
/// .increment(3)
/// .mode(RoundMode::Trunc)
/// // A relative datetime must be provided when
/// // rounding involves calendar units.
/// .relative(date(2024, 1, 1));
/// let span2 = span1.round(round)?;
/// assert_eq!(span2.get_months() / 3, 3);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn round<'a, R: Into<SpanRound<'a>>>(
self,
options: R,
) -> Result<Span, Error> {
let options: SpanRound<'a> = options.into();
options.round(self)
}
/// Converts a `Span` to a [`SignedDuration`] relative to the date given.
///
/// In most cases, it is unlikely that you'll need to use this routine to
/// convert a `Span` to a `SignedDuration`. Namely, by default:
///
/// * [`Zoned::until`] guarantees that the biggest non-zero unit is hours.
/// * [`Timestamp::until`] guarantees that the biggest non-zero unit is
/// seconds.
/// * [`DateTime::until`] guarantees that the biggest non-zero unit is
/// days.
/// * [`Date::until`] guarantees that the biggest non-zero unit is days.
/// * [`Time::until`] guarantees that the biggest non-zero unit is hours.
///
/// In the above, only [`DateTime::until`] and [`Date::until`] return
/// calendar units by default. In which case, one may pass
/// [`SpanRelativeTo::days_are_24_hours`] or an actual relative date to
/// resolve the length of a day.
///
/// Of course, any of the above can be changed by asking, for example,
/// `Zoned::until` to return units up to years.
///
/// # Errors
///
/// This returns an error if adding this span to the date given results in
/// overflow. This can also return an error if one uses
/// [`SpanRelativeTo::days_are_24_hours`] with a `Span` that has non-zero
/// units greater than weeks.
///
/// # Example: converting a span with calendar units to a `SignedDuration`
///
/// This compares the number of seconds in a non-leap year with a leap
/// year:
///
/// ```
/// use jiff::{civil::date, SignedDuration, ToSpan};
///
/// let span = 1.year();
///
/// let duration = span.to_duration(date(2024, 1, 1))?;
/// assert_eq!(duration, SignedDuration::from_secs(31_622_400));
/// let duration = span.to_duration(date(2023, 1, 1))?;
/// assert_eq!(duration, SignedDuration::from_secs(31_536_000));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: converting a span without a relative datetime
///
/// If for some reason it doesn't make sense to include a
/// relative datetime, you can use this routine to convert a
/// `Span` with units up to weeks to a `SignedDuration` via the
/// [`SpanRelativeTo::days_are_24_hours`] marker:
///
/// ```
/// use jiff::{civil::date, SignedDuration, SpanRelativeTo, ToSpan};
///
/// let span = 1.week().days(1);
///
/// let duration = span.to_duration(SpanRelativeTo::days_are_24_hours())?;
/// assert_eq!(duration, SignedDuration::from_hours(192));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn to_duration<'a, R: Into<SpanRelativeTo<'a>>>(
&self,
relative: R,
) -> Result<SignedDuration, Error> {
let max_unit = self.largest_unit();
let relative: SpanRelativeTo<'a> = relative.into();
let Some(result) = relative.to_relative(max_unit).transpose() else {
return Ok(self.to_duration_invariant());
};
let relspan = result
.and_then(|r| r.into_relative_span(Unit::Second, *self))
.with_context(|| {
err!(
"could not compute normalized relative span \
from datetime {relative} and span {self}",
relative = relative.kind,
)
})?;
debug_assert!(relspan.span.largest_unit() <= Unit::Second);
Ok(relspan.span.to_duration_invariant())
}
/// Converts an entirely invariant span to a `SignedDuration`.
///
/// Callers must ensure that this span has no units greater than weeks.
/// If it does have non-zero units of days or weeks, then every day is
/// considered 24 hours and every week 7 days. Generally speaking, callers
/// should also ensure that if this span does have non-zero day/week units,
/// then callers have either provided a civil relative date or the special
/// `SpanRelativeTo::days_are_24_hours()` marker.
#[inline]
pub(crate) fn to_duration_invariant(&self) -> SignedDuration {
// This guarantees, at compile time, that a maximal invariant Span
// (that is, all units are days or lower and all units are set to their
// maximum values) will still balance out to a number of seconds that
// fits into a `i64`. This in turn implies that a `SignedDuration` can
// represent all possible invariant positive spans.
const _FITS_IN_U64: () = {
debug_assert!(
i64::MAX as i128
> ((t::SpanWeeks::MAX
* t::SECONDS_PER_CIVIL_WEEK.bound())
+ (t::SpanDays::MAX
* t::SECONDS_PER_CIVIL_DAY.bound())
+ (t::SpanHours::MAX * t::SECONDS_PER_HOUR.bound())
+ (t::SpanMinutes::MAX
* t::SECONDS_PER_MINUTE.bound())
+ t::SpanSeconds::MAX
+ (t::SpanMilliseconds::MAX
/ t::MILLIS_PER_SECOND.bound())
+ (t::SpanMicroseconds::MAX
/ t::MICROS_PER_SECOND.bound())
+ (t::SpanNanoseconds::MAX
/ t::NANOS_PER_SECOND.bound())),
);
()
};
let nanos = self.to_invariant_nanoseconds();
debug_assert!(
self.largest_unit() <= Unit::Week,
"units must be weeks or lower"
);
let seconds = nanos / t::NANOS_PER_SECOND;
let seconds = i64::from(seconds);
let subsec_nanos = nanos % t::NANOS_PER_SECOND;
// OK because % 1_000_000_000 above guarantees that the result fits
// in a i32.
let subsec_nanos = i32::try_from(subsec_nanos).unwrap();
// SignedDuration::new can panic if |subsec_nanos| >= 1_000_000_000
// and seconds == {i64::MIN,i64::MAX}. But this can never happen
// because we guaranteed by construction above that |subsec_nanos| <
// 1_000_000_000.
SignedDuration::new(seconds, subsec_nanos)
}
}
/// Crate internal APIs that operate on ranged integer types.
impl Span {
#[inline]
pub(crate) fn years_ranged(self, years: impl RInto<t::SpanYears>) -> Span {
let years = years.rinto();
let mut span = Span { years: years.abs(), ..self };
span.sign = self.resign(years, &span);
span.units = span.units.set(Unit::Year, years == 0);
span
}
#[inline]
pub(crate) fn months_ranged(
self,
months: impl RInto<t::SpanMonths>,
) -> Span {
let months = months.rinto();
let mut span = Span { months: months.abs(), ..self };
span.sign = self.resign(months, &span);
span.units = span.units.set(Unit::Month, months == 0);
span
}
#[inline]
pub(crate) fn weeks_ranged(self, weeks: impl RInto<t::SpanWeeks>) -> Span {
let weeks = weeks.rinto();
let mut span = Span { weeks: weeks.abs(), ..self };
span.sign = self.resign(weeks, &span);
span.units = span.units.set(Unit::Week, weeks == 0);
span
}
#[inline]
pub(crate) fn days_ranged(self, days: impl RInto<t::SpanDays>) -> Span {
let days = days.rinto();
let mut span = Span { days: days.abs(), ..self };
span.sign = self.resign(days, &span);
span.units = span.units.set(Unit::Day, days == 0);
span
}
#[inline]
pub(crate) fn hours_ranged(self, hours: impl RInto<t::SpanHours>) -> Span {
let hours = hours.rinto();
let mut span = Span { hours: hours.abs(), ..self };
span.sign = self.resign(hours, &span);
span.units = span.units.set(Unit::Hour, hours == 0);
span
}
#[inline]
pub(crate) fn minutes_ranged(
self,
minutes: impl RInto<t::SpanMinutes>,
) -> Span {
let minutes = minutes.rinto();
let mut span = Span { minutes: minutes.abs(), ..self };
span.sign = self.resign(minutes, &span);
span.units = span.units.set(Unit::Minute, minutes == 0);
span
}
#[inline]
pub(crate) fn seconds_ranged(
self,
seconds: impl RInto<t::SpanSeconds>,
) -> Span {
let seconds = seconds.rinto();
let mut span = Span { seconds: seconds.abs(), ..self };
span.sign = self.resign(seconds, &span);
span.units = span.units.set(Unit::Second, seconds == 0);
span
}
#[inline]
fn milliseconds_ranged(
self,
milliseconds: impl RInto<t::SpanMilliseconds>,
) -> Span {
let milliseconds = milliseconds.rinto();
let mut span = Span { milliseconds: milliseconds.abs(), ..self };
span.sign = self.resign(milliseconds, &span);
span.units = span.units.set(Unit::Millisecond, milliseconds == 0);
span
}
#[inline]
fn microseconds_ranged(
self,
microseconds: impl RInto<t::SpanMicroseconds>,
) -> Span {
let microseconds = microseconds.rinto();
let mut span = Span { microseconds: microseconds.abs(), ..self };
span.sign = self.resign(microseconds, &span);
span.units = span.units.set(Unit::Microsecond, microseconds == 0);
span
}
#[inline]
pub(crate) fn nanoseconds_ranged(
self,
nanoseconds: impl RInto<t::SpanNanoseconds>,
) -> Span {
let nanoseconds = nanoseconds.rinto();
let mut span = Span { nanoseconds: nanoseconds.abs(), ..self };
span.sign = self.resign(nanoseconds, &span);
span.units = span.units.set(Unit::Nanosecond, nanoseconds == 0);
span
}
#[inline]
fn try_years_ranged(
self,
years: impl TryRInto<t::SpanYears>,
) -> Result<Span, Error> {
let years = years.try_rinto("years")?;
Ok(self.years_ranged(years))
}
#[inline]
fn try_months_ranged(
self,
months: impl TryRInto<t::SpanMonths>,
) -> Result<Span, Error> {
let months = months.try_rinto("months")?;
Ok(self.months_ranged(months))
}
#[inline]
fn try_weeks_ranged(
self,
weeks: impl TryRInto<t::SpanWeeks>,
) -> Result<Span, Error> {
let weeks = weeks.try_rinto("weeks")?;
Ok(self.weeks_ranged(weeks))
}
#[inline]
fn try_days_ranged(
self,
days: impl TryRInto<t::SpanDays>,
) -> Result<Span, Error> {
let days = days.try_rinto("days")?;
Ok(self.days_ranged(days))
}
#[inline]
pub(crate) fn try_hours_ranged(
self,
hours: impl TryRInto<t::SpanHours>,
) -> Result<Span, Error> {
let hours = hours.try_rinto("hours")?;
Ok(self.hours_ranged(hours))
}
#[inline]
pub(crate) fn try_minutes_ranged(
self,
minutes: impl TryRInto<t::SpanMinutes>,
) -> Result<Span, Error> {
let minutes = minutes.try_rinto("minutes")?;
Ok(self.minutes_ranged(minutes))
}
#[inline]
pub(crate) fn try_seconds_ranged(
self,
seconds: impl TryRInto<t::SpanSeconds>,
) -> Result<Span, Error> {
let seconds = seconds.try_rinto("seconds")?;
Ok(self.seconds_ranged(seconds))
}
#[inline]
pub(crate) fn try_milliseconds_ranged(
self,
milliseconds: impl TryRInto<t::SpanMilliseconds>,
) -> Result<Span, Error> {
let milliseconds = milliseconds.try_rinto("milliseconds")?;
Ok(self.milliseconds_ranged(milliseconds))
}
#[inline]
pub(crate) fn try_microseconds_ranged(
self,
microseconds: impl TryRInto<t::SpanMicroseconds>,
) -> Result<Span, Error> {
let microseconds = microseconds.try_rinto("microseconds")?;
Ok(self.microseconds_ranged(microseconds))
}
#[inline]
pub(crate) fn try_nanoseconds_ranged(
self,
nanoseconds: impl TryRInto<t::SpanNanoseconds>,
) -> Result<Span, Error> {
let nanoseconds = nanoseconds.try_rinto("nanoseconds")?;
Ok(self.nanoseconds_ranged(nanoseconds))
}
#[inline]
pub(crate) fn try_units_ranged(
self,
unit: Unit,
value: impl RInto<NoUnits>,
) -> Result<Span, Error> {
let value = value.rinto();
match unit {
Unit::Year => self.try_years_ranged(value),
Unit::Month => self.try_months_ranged(value),
Unit::Week => self.try_weeks_ranged(value),
Unit::Day => self.try_days_ranged(value),
Unit::Hour => self.try_hours_ranged(value),
Unit::Minute => self.try_minutes_ranged(value),
Unit::Second => self.try_seconds_ranged(value),
Unit::Millisecond => self.try_milliseconds_ranged(value),
Unit::Microsecond => self.try_microseconds_ranged(value),
Unit::Nanosecond => self.try_nanoseconds_ranged(value),
}
}
#[inline]
pub(crate) fn get_years_ranged(&self) -> t::SpanYears {
self.years * self.sign
}
#[inline]
pub(crate) fn get_months_ranged(&self) -> t::SpanMonths {
self.months * self.sign
}
#[inline]
pub(crate) fn get_weeks_ranged(&self) -> t::SpanWeeks {
self.weeks * self.sign
}
#[inline]
pub(crate) fn get_days_ranged(&self) -> t::SpanDays {
self.days * self.sign
}
#[inline]
pub(crate) fn get_hours_ranged(&self) -> t::SpanHours {
self.hours * self.sign
}
#[inline]
pub(crate) fn get_minutes_ranged(&self) -> t::SpanMinutes {
self.minutes * self.sign
}
#[inline]
pub(crate) fn get_seconds_ranged(&self) -> t::SpanSeconds {
self.seconds * self.sign
}
#[inline]
pub(crate) fn get_milliseconds_ranged(&self) -> t::SpanMilliseconds {
self.milliseconds * self.sign
}
#[inline]
pub(crate) fn get_microseconds_ranged(&self) -> t::SpanMicroseconds {
self.microseconds * self.sign
}
#[inline]
pub(crate) fn get_nanoseconds_ranged(&self) -> t::SpanNanoseconds {
self.nanoseconds * self.sign
}
#[inline]
fn get_sign_ranged(&self) -> ri8<-1, 1> {
self.sign
}
#[inline]
fn get_units_ranged(&self, unit: Unit) -> NoUnits {
match unit {
Unit::Year => self.get_years_ranged().rinto(),
Unit::Month => self.get_months_ranged().rinto(),
Unit::Week => self.get_weeks_ranged().rinto(),
Unit::Day => self.get_days_ranged().rinto(),
Unit::Hour => self.get_hours_ranged().rinto(),
Unit::Minute => self.get_minutes_ranged().rinto(),
Unit::Second => self.get_seconds_ranged().rinto(),
Unit::Millisecond => self.get_milliseconds_ranged().rinto(),
Unit::Microsecond => self.get_microseconds_ranged().rinto(),
Unit::Nanosecond => self.get_nanoseconds_ranged().rinto(),
}
}
}
/// Crate internal helper routines.
impl Span {
/// Converts the given number of nanoseconds to a `Span` whose units do not
/// exceed `largest`.
///
/// Note that `largest` is capped at `Unit::Week`. Note though that if
/// any unit greater than `Unit::Week` is given, then it is treated as
/// `Unit::Day`. The only way to get weeks in the `Span` returned is to
/// specifically request `Unit::Week`.
///
/// And also note that days in this context are civil days. That is, they
/// are always 24 hours long. Callers needing to deal with variable length
/// days should do so outside of this routine and should not provide a
/// `largest` unit bigger than `Unit::Hour`.
pub(crate) fn from_invariant_nanoseconds(
largest: Unit,
nanos: impl RInto<NoUnits128>,
) -> Result<Span, Error> {
let nanos = nanos.rinto();
let mut span = Span::new();
match largest {
Unit::Week => {
let micros = nanos.div_ceil(t::NANOS_PER_MICRO);
span = span.try_nanoseconds_ranged(
nanos.rem_ceil(t::NANOS_PER_MICRO),
)?;
let millis = micros.div_ceil(t::MICROS_PER_MILLI);
span = span.try_microseconds_ranged(
micros.rem_ceil(t::MICROS_PER_MILLI),
)?;
let secs = millis.div_ceil(t::MILLIS_PER_SECOND);
span = span.try_milliseconds_ranged(
millis.rem_ceil(t::MILLIS_PER_SECOND),
)?;
let mins = secs.div_ceil(t::SECONDS_PER_MINUTE);
span = span.try_seconds_ranged(
secs.rem_ceil(t::SECONDS_PER_MINUTE),
)?;
let hours = mins.div_ceil(t::MINUTES_PER_HOUR);
span = span
.try_minutes_ranged(mins.rem_ceil(t::MINUTES_PER_HOUR))?;
let days = hours.div_ceil(t::HOURS_PER_CIVIL_DAY);
span = span.try_hours_ranged(
hours.rem_ceil(t::HOURS_PER_CIVIL_DAY),
)?;
let weeks = days.div_ceil(t::DAYS_PER_CIVIL_WEEK);
span = span
.try_days_ranged(days.rem_ceil(t::DAYS_PER_CIVIL_WEEK))?;
span = span.try_weeks_ranged(weeks)?;
Ok(span)
}
Unit::Year | Unit::Month | Unit::Day => {
// Unit::Year | Unit::Month | Unit::Week | Unit::Day => {
let micros = nanos.div_ceil(t::NANOS_PER_MICRO);
span = span.try_nanoseconds_ranged(
nanos.rem_ceil(t::NANOS_PER_MICRO),
)?;
let millis = micros.div_ceil(t::MICROS_PER_MILLI);
span = span.try_microseconds_ranged(
micros.rem_ceil(t::MICROS_PER_MILLI),
)?;
let secs = millis.div_ceil(t::MILLIS_PER_SECOND);
span = span.try_milliseconds_ranged(
millis.rem_ceil(t::MILLIS_PER_SECOND),
)?;
let mins = secs.div_ceil(t::SECONDS_PER_MINUTE);
span = span.try_seconds_ranged(
secs.rem_ceil(t::SECONDS_PER_MINUTE),
)?;
let hours = mins.div_ceil(t::MINUTES_PER_HOUR);
span = span
.try_minutes_ranged(mins.rem_ceil(t::MINUTES_PER_HOUR))?;
let days = hours.div_ceil(t::HOURS_PER_CIVIL_DAY);
span = span.try_hours_ranged(
hours.rem_ceil(t::HOURS_PER_CIVIL_DAY),
)?;
span = span.try_days_ranged(days)?;
Ok(span)
}
Unit::Hour => {
let micros = nanos.div_ceil(t::NANOS_PER_MICRO);
span = span.try_nanoseconds_ranged(
nanos.rem_ceil(t::NANOS_PER_MICRO),
)?;
let millis = micros.div_ceil(t::MICROS_PER_MILLI);
span = span.try_microseconds_ranged(
micros.rem_ceil(t::MICROS_PER_MILLI),
)?;
let secs = millis.div_ceil(t::MILLIS_PER_SECOND);
span = span.try_milliseconds_ranged(
millis.rem_ceil(t::MILLIS_PER_SECOND),
)?;
let mins = secs.div_ceil(t::SECONDS_PER_MINUTE);
span = span.try_seconds_ranged(
secs.rem_ceil(t::SECONDS_PER_MINUTE),
)?;
let hours = mins.div_ceil(t::MINUTES_PER_HOUR);
span = span
.try_minutes_ranged(mins.rem_ceil(t::MINUTES_PER_HOUR))?;
span = span.try_hours_ranged(hours)?;
Ok(span)
}
Unit::Minute => {
let micros = nanos.div_ceil(t::NANOS_PER_MICRO);
span = span.try_nanoseconds_ranged(
nanos.rem_ceil(t::NANOS_PER_MICRO),
)?;
let millis = micros.div_ceil(t::MICROS_PER_MILLI);
span = span.try_microseconds_ranged(
micros.rem_ceil(t::MICROS_PER_MILLI),
)?;
let secs = millis.div_ceil(t::MILLIS_PER_SECOND);
span = span.try_milliseconds_ranged(
millis.rem_ceil(t::MILLIS_PER_SECOND),
)?;
let mins = secs.div_ceil(t::SECONDS_PER_MINUTE);
span =
span.try_seconds(secs.rem_ceil(t::SECONDS_PER_MINUTE))?;
span = span.try_minutes_ranged(mins)?;
Ok(span)
}
Unit::Second => {
let micros = nanos.div_ceil(t::NANOS_PER_MICRO);
span = span.try_nanoseconds_ranged(
nanos.rem_ceil(t::NANOS_PER_MICRO),
)?;
let millis = micros.div_ceil(t::MICROS_PER_MILLI);
span = span.try_microseconds_ranged(
micros.rem_ceil(t::MICROS_PER_MILLI),
)?;
let secs = millis.div_ceil(t::MILLIS_PER_SECOND);
span = span.try_milliseconds_ranged(
millis.rem_ceil(t::MILLIS_PER_SECOND),
)?;
span = span.try_seconds_ranged(secs)?;
Ok(span)
}
Unit::Millisecond => {
let micros = nanos.div_ceil(t::NANOS_PER_MICRO);
span = span.try_nanoseconds_ranged(
nanos.rem_ceil(t::NANOS_PER_MICRO),
)?;
let millis = micros.div_ceil(t::MICROS_PER_MILLI);
span = span.try_microseconds_ranged(
micros.rem_ceil(t::MICROS_PER_MILLI),
)?;
span = span.try_milliseconds_ranged(millis)?;
Ok(span)
}
Unit::Microsecond => {
let micros = nanos.div_ceil(t::NANOS_PER_MICRO);
span = span.try_nanoseconds_ranged(
nanos.rem_ceil(t::NANOS_PER_MICRO),
)?;
span = span.try_microseconds_ranged(micros)?;
Ok(span)
}
Unit::Nanosecond => {
span = span.try_nanoseconds_ranged(nanos)?;
Ok(span)
}
}
}
/// Converts the non-variable units of this `Span` to a total number of
/// nanoseconds.
///
/// This includes days and weeks, even though they can be of irregular
/// length during time zone transitions. If this applies, then callers
/// should set the days and weeks to `0` before calling this routine.
///
/// All units above weeks are always ignored.
#[inline]
pub(crate) fn to_invariant_nanoseconds(&self) -> NoUnits128 {
let mut nanos = NoUnits128::rfrom(self.get_nanoseconds_ranged());
nanos += NoUnits128::rfrom(self.get_microseconds_ranged())
* t::NANOS_PER_MICRO;
nanos += NoUnits128::rfrom(self.get_milliseconds_ranged())
* t::NANOS_PER_MILLI;
nanos +=
NoUnits128::rfrom(self.get_seconds_ranged()) * t::NANOS_PER_SECOND;
nanos +=
NoUnits128::rfrom(self.get_minutes_ranged()) * t::NANOS_PER_MINUTE;
nanos +=
NoUnits128::rfrom(self.get_hours_ranged()) * t::NANOS_PER_HOUR;
nanos +=
NoUnits128::rfrom(self.get_days_ranged()) * t::NANOS_PER_CIVIL_DAY;
nanos += NoUnits128::rfrom(self.get_weeks_ranged())
* t::NANOS_PER_CIVIL_WEEK;
nanos
}
/// Converts the non-variable units of this `Span` to a total number of
/// seconds if there is no fractional second component. Otherwise,
/// `None` is returned.
///
/// This is useful for short-circuiting in arithmetic operations when
/// it's faster to only deal with seconds. And in particular, acknowledges
/// that nanosecond precision durations are somewhat rare.
///
/// This includes days and weeks, even though they can be of irregular
/// length during time zone transitions. If this applies, then callers
/// should set the days and weeks to `0` before calling this routine.
///
/// All units above weeks are always ignored.
#[inline]
pub(crate) fn to_invariant_seconds(&self) -> Option<NoUnits> {
if self.has_fractional_seconds() {
return None;
}
let mut seconds = NoUnits::rfrom(self.get_seconds_ranged());
seconds +=
NoUnits::rfrom(self.get_minutes_ranged()) * t::SECONDS_PER_MINUTE;
seconds +=
NoUnits::rfrom(self.get_hours_ranged()) * t::SECONDS_PER_HOUR;
seconds +=
NoUnits::rfrom(self.get_days_ranged()) * t::SECONDS_PER_CIVIL_DAY;
seconds += NoUnits::rfrom(self.get_weeks_ranged())
* t::SECONDS_PER_CIVIL_WEEK;
Some(seconds)
}
/// Rebalances the invariant units (days or lower) on this span so that
/// the largest possible non-zero unit is the one given.
///
/// Units above day are ignored and dropped.
///
/// If the given unit is greater than days, then it is treated as-if it
/// were days.
///
/// # Errors
///
/// This can return an error in the case of lop-sided units. For example,
/// if this span has maximal values for all units, then rebalancing is
/// not possible because the number of days after balancing would exceed
/// the limit.
#[cfg(test)] // currently only used in zic parser?
#[inline]
pub(crate) fn rebalance(self, unit: Unit) -> Result<Span, Error> {
Span::from_invariant_nanoseconds(unit, self.to_invariant_nanoseconds())
}
/// Returns true if and only if this span has at least one non-zero
/// fractional second unit.
#[inline]
pub(crate) fn has_fractional_seconds(&self) -> bool {
self.milliseconds != 0
|| self.microseconds != 0
|| self.nanoseconds != 0
}
/// Returns an equivalent span, but with all non-calendar (units below
/// days) set to zero.
#[inline(always)]
pub(crate) fn only_calendar(self) -> Span {
let mut span = self;
span.hours = t::SpanHours::N::<0>();
span.minutes = t::SpanMinutes::N::<0>();
span.seconds = t::SpanSeconds::N::<0>();
span.milliseconds = t::SpanMilliseconds::N::<0>();
span.microseconds = t::SpanMicroseconds::N::<0>();
span.nanoseconds = t::SpanNanoseconds::N::<0>();
if span.sign != 0
&& span.years == 0
&& span.months == 0
&& span.weeks == 0
&& span.days == 0
{
span.sign = t::Sign::N::<0>();
}
span.units = span.units.only_calendar();
span
}
/// Returns an equivalent span, but with all calendar (units above
/// hours) set to zero.
#[inline(always)]
pub(crate) fn only_time(self) -> Span {
let mut span = self;
span.years = t::SpanYears::N::<0>();
span.months = t::SpanMonths::N::<0>();
span.weeks = t::SpanWeeks::N::<0>();
span.days = t::SpanDays::N::<0>();
if span.sign != 0
&& span.hours == 0
&& span.minutes == 0
&& span.seconds == 0
&& span.milliseconds == 0
&& span.microseconds == 0
&& span.nanoseconds == 0
{
span.sign = t::Sign::N::<0>();
}
span.units = span.units.only_time();
span
}
/// Returns an equivalent span, but with all units greater than or equal to
/// the one given set to zero.
#[inline(always)]
pub(crate) fn only_lower(self, unit: Unit) -> Span {
let mut span = self;
// Unit::Nanosecond is the minimum, so nothing can be smaller than it.
if unit <= Unit::Microsecond {
span = span.microseconds_ranged(C(0));
}
if unit <= Unit::Millisecond {
span = span.milliseconds_ranged(C(0));
}
if unit <= Unit::Second {
span = span.seconds_ranged(C(0));
}
if unit <= Unit::Minute {
span = span.minutes_ranged(C(0));
}
if unit <= Unit::Hour {
span = span.hours_ranged(C(0));
}
if unit <= Unit::Day {
span = span.days_ranged(C(0));
}
if unit <= Unit::Week {
span = span.weeks_ranged(C(0));
}
if unit <= Unit::Month {
span = span.months_ranged(C(0));
}
if unit <= Unit::Year {
span = span.years_ranged(C(0));
}
span
}
/// Returns an equivalent span, but with all units less than the one given
/// set to zero.
#[inline(always)]
pub(crate) fn without_lower(self, unit: Unit) -> Span {
let mut span = self;
if unit > Unit::Nanosecond {
span = span.nanoseconds_ranged(C(0));
}
if unit > Unit::Microsecond {
span = span.microseconds_ranged(C(0));
}
if unit > Unit::Millisecond {
span = span.milliseconds_ranged(C(0));
}
if unit > Unit::Second {
span = span.seconds_ranged(C(0));
}
if unit > Unit::Minute {
span = span.minutes_ranged(C(0));
}
if unit > Unit::Hour {
span = span.hours_ranged(C(0));
}
if unit > Unit::Day {
span = span.days_ranged(C(0));
}
if unit > Unit::Week {
span = span.weeks_ranged(C(0));
}
if unit > Unit::Month {
span = span.months_ranged(C(0));
}
// Unit::Year is the max, so nothing can be bigger than it.
span
}
/// Returns an error corresponding to the smallest non-time non-zero unit.
///
/// If all non-time units are zero, then this returns `None`.
#[inline(always)]
pub(crate) fn smallest_non_time_non_zero_unit_error(
&self,
) -> Option<Error> {
let non_time_unit = self.largest_calendar_unit()?;
Some(err!(
"operation can only be performed with units of hours \
or smaller, but found non-zero {unit} units \
(operations on `Timestamp`, `tz::Offset` and `civil::Time` \
don't support calendar units in a `Span`)",
unit = non_time_unit.singular(),
))
}
/// Returns the largest non-zero calendar unit, or `None` if there are no
/// non-zero calendar units.
#[inline]
pub(crate) fn largest_calendar_unit(&self) -> Option<Unit> {
self.units().only_calendar().largest_unit()
}
/// Returns the largest non-zero unit in this span.
///
/// If all components of this span are zero, then `Unit::Nanosecond` is
/// returned.
#[inline]
pub(crate) fn largest_unit(&self) -> Unit {
self.units().largest_unit().unwrap_or(Unit::Nanosecond)
}
/// Returns the set of units on this `Span`.
#[inline]
pub(crate) fn units(&self) -> UnitSet {
self.units
}
/// Returns a string containing the value of all non-zero fields.
///
/// This is useful for debugging. Normally, this would be the "alternate"
/// debug impl (perhaps), but that's what insta uses and I preferred having
/// the friendly format used there since it is much more terse.
#[cfg(feature = "alloc")]
#[allow(dead_code)]
pub(crate) fn debug(&self) -> alloc::string::String {
use core::fmt::Write;
let mut buf = alloc::string::String::new();
write!(buf, "Span {{ sign: {:?}, units: {:?}", self.sign, self.units)
.unwrap();
if self.years != 0 {
write!(buf, ", years: {:?}", self.years).unwrap();
}
if self.months != 0 {
write!(buf, ", months: {:?}", self.months).unwrap();
}
if self.weeks != 0 {
write!(buf, ", weeks: {:?}", self.weeks).unwrap();
}
if self.days != 0 {
write!(buf, ", days: {:?}", self.days).unwrap();
}
if self.hours != 0 {
write!(buf, ", hours: {:?}", self.hours).unwrap();
}
if self.minutes != 0 {
write!(buf, ", minutes: {:?}", self.minutes).unwrap();
}
if self.seconds != 0 {
write!(buf, ", seconds: {:?}", self.seconds).unwrap();
}
if self.milliseconds != 0 {
write!(buf, ", milliseconds: {:?}", self.milliseconds).unwrap();
}
if self.microseconds != 0 {
write!(buf, ", microseconds: {:?}", self.microseconds).unwrap();
}
if self.nanoseconds != 0 {
write!(buf, ", nanoseconds: {:?}", self.nanoseconds).unwrap();
}
write!(buf, " }}").unwrap();
buf
}
/// Given some new units to set on this span and the span updates with the
/// new units, this determines the what the sign of `new` should be.
#[inline]
fn resign(&self, units: impl RInto<NoUnits>, new: &Span) -> Sign {
let units = units.rinto();
// Negative units anywhere always makes the entire span negative.
if units < 0 {
return Sign::N::<-1>();
}
let mut new_is_zero = new.sign == 0 && units == 0;
// When `units == 0` and it was previously non-zero, then `new.sign`
// won't be `0` and thus `new_is_zero` will be false when it should
// be true. So in this case, we need to re-check all the units to set
// the sign correctly.
if units == 0 {
new_is_zero = new.years == 0
&& new.months == 0
&& new.weeks == 0
&& new.days == 0
&& new.hours == 0
&& new.minutes == 0
&& new.seconds == 0
&& new.milliseconds == 0
&& new.microseconds == 0
&& new.nanoseconds == 0;
}
match (self.is_zero(), new_is_zero) {
(_, true) => Sign::N::<0>(),
(true, false) => units.signum().rinto(),
// If the old and new span are both non-zero, and we know our new
// units are not negative, then the sign remains unchanged.
(false, false) => new.sign,
}
}
}
impl Default for Span {
#[inline]
fn default() -> Span {
Span {
sign: ri8::N::<0>(),
units: UnitSet::empty(),
years: C(0).rinto(),
months: C(0).rinto(),
weeks: C(0).rinto(),
days: C(0).rinto(),
hours: C(0).rinto(),
minutes: C(0).rinto(),
seconds: C(0).rinto(),
milliseconds: C(0).rinto(),
microseconds: C(0).rinto(),
nanoseconds: C(0).rinto(),
}
}
}
impl core::fmt::Debug for Span {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
use crate::fmt::StdFmtWrite;
friendly::DEFAULT_SPAN_PRINTER
.print_span(self, StdFmtWrite(f))
.map_err(|_| core::fmt::Error)
}
}
impl core::fmt::Display for Span {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
use crate::fmt::StdFmtWrite;
if f.alternate() {
friendly::DEFAULT_SPAN_PRINTER
.print_span(self, StdFmtWrite(f))
.map_err(|_| core::fmt::Error)
} else {
temporal::DEFAULT_SPAN_PRINTER
.print_span(self, StdFmtWrite(f))
.map_err(|_| core::fmt::Error)
}
}
}
impl core::str::FromStr for Span {
type Err = Error;
#[inline]
fn from_str(string: &str) -> Result<Span, Error> {
parse_iso_or_friendly(string.as_bytes())
}
}
impl core::ops::Neg for Span {
type Output = Span;
#[inline]
fn neg(self) -> Span {
self.negate()
}
}
/// This multiplies each unit in a span by an integer.
///
/// This panics on overflow. For checked arithmetic, use [`Span::checked_mul`].
impl core::ops::Mul<i64> for Span {
type Output = Span;
#[inline]
fn mul(self, rhs: i64) -> Span {
self.checked_mul(rhs)
.expect("multiplying `Span` by a scalar overflowed")
}
}
/// This multiplies each unit in a span by an integer.
///
/// This panics on overflow. For checked arithmetic, use [`Span::checked_mul`].
impl core::ops::Mul<Span> for i64 {
type Output = Span;
#[inline]
fn mul(self, rhs: Span) -> Span {
rhs.checked_mul(self)
.expect("multiplying `Span` by a scalar overflowed")
}
}
/// Converts a `Span` to a [`std::time::Duration`].
///
/// Note that this assumes that days are always 24 hours long.
///
/// # Errors
///
/// This can fail for only two reasons:
///
/// * The span is negative. This is an error because a `std::time::Duration` is
/// unsigned.)
/// * The span has any non-zero units greater than hours. This is an error
/// because it's impossible to determine the length of, e.g., a month without
/// a reference date.
///
/// This can never result in overflow because a `Duration` can represent a
/// bigger span of time than `Span` when limited to units of hours or lower.
///
/// If you need to convert a `Span` to a `Duration` that has non-zero
/// units bigger than hours, then please use [`Span::to_duration`] with a
/// corresponding relative date.
///
/// # Example: maximal span
///
/// This example shows the maximum possible span using units of hours or
/// smaller, and the corresponding `Duration` value:
///
/// ```
/// use std::time::Duration;
///
/// use jiff::Span;
///
/// let sp = Span::new()
/// .hours(175_307_616)
/// .minutes(10_518_456_960i64)
/// .seconds(631_107_417_600i64)
/// .milliseconds(631_107_417_600_000i64)
/// .microseconds(631_107_417_600_000_000i64)
/// .nanoseconds(9_223_372_036_854_775_807i64);
/// let duration = Duration::try_from(sp)?;
/// assert_eq!(duration, Duration::new(3_164_760_460_036, 854_775_807));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: converting a negative span
///
/// Since a `Span` is signed and a `Duration` is unsigned, converting
/// a negative `Span` to `Duration` will always fail. One can use
/// [`Span::signum`] to get the sign of the span and [`Span::abs`] to make the
/// span positive before converting it to a `Duration`:
///
/// ```
/// use std::time::Duration;
///
/// use jiff::{Span, ToSpan};
///
/// let span = -86_400.seconds().nanoseconds(1);
/// let (sign, duration) = (span.signum(), Duration::try_from(span.abs())?);
/// assert_eq!((sign, duration), (-1, Duration::new(86_400, 1)));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
impl TryFrom<Span> for UnsignedDuration {
type Error = Error;
#[inline]
fn try_from(sp: Span) -> Result<UnsignedDuration, Error> {
// This isn't needed, but improves error messages.
if sp.is_negative() {
return Err(err!(
"cannot convert negative span {sp:?} \
to unsigned std::time::Duration",
));
}
SignedDuration::try_from(sp).and_then(UnsignedDuration::try_from)
}
}
/// Converts a [`std::time::Duration`] to a `Span`.
///
/// The span returned from this conversion will only ever have non-zero units
/// of seconds or smaller.
///
/// # Errors
///
/// This only fails when the given `Duration` overflows the maximum number of
/// seconds representable by a `Span`.
///
/// # Example
///
/// This shows a basic conversion:
///
/// ```
/// use std::time::Duration;
///
/// use jiff::{Span, ToSpan};
///
/// let duration = Duration::new(86_400, 123_456_789);
/// let span = Span::try_from(duration)?;
/// // A duration-to-span conversion always results in a span with
/// // non-zero units no bigger than seconds.
/// assert_eq!(
/// span.fieldwise(),
/// 86_400.seconds().milliseconds(123).microseconds(456).nanoseconds(789),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: rounding
///
/// This example shows how to convert a `Duration` to a `Span`, and then round
/// it up to bigger units given a relative date:
///
/// ```
/// use std::time::Duration;
///
/// use jiff::{civil::date, Span, SpanRound, ToSpan, Unit};
///
/// let duration = Duration::new(450 * 86_401, 0);
/// let span = Span::try_from(duration)?;
/// // We get back a simple span of just seconds:
/// assert_eq!(span.fieldwise(), Span::new().seconds(450 * 86_401));
/// // But we can balance it up to bigger units:
/// let options = SpanRound::new()
/// .largest(Unit::Year)
/// .relative(date(2024, 1, 1));
/// assert_eq!(
/// span.round(options)?,
/// 1.year().months(2).days(25).minutes(7).seconds(30).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
impl TryFrom<UnsignedDuration> for Span {
type Error = Error;
#[inline]
fn try_from(d: UnsignedDuration) -> Result<Span, Error> {
let seconds = i64::try_from(d.as_secs()).map_err(|_| {
err!("seconds from {d:?} overflows a 64-bit signed integer")
})?;
let nanoseconds = i64::from(d.subsec_nanos());
let milliseconds = nanoseconds / t::NANOS_PER_MILLI.value();
let microseconds = (nanoseconds % t::NANOS_PER_MILLI.value())
/ t::NANOS_PER_MICRO.value();
let nanoseconds = nanoseconds % t::NANOS_PER_MICRO.value();
let span = Span::new().try_seconds(seconds).with_context(|| {
err!("duration {d:?} overflows limits of a Jiff `Span`")
})?;
// These are all OK because `Duration::subsec_nanos` is guaranteed to
// return less than 1_000_000_000 nanoseconds. And splitting that up
// into millis, micros and nano components is guaranteed to fit into
// the limits of a `Span`.
Ok(span
.milliseconds(milliseconds)
.microseconds(microseconds)
.nanoseconds(nanoseconds))
}
}
/// Converts a `Span` to a [`SignedDuration`].
///
/// Note that this assumes that days are always 24 hours long.
///
/// # Errors
///
/// This can fail for only when the span has any non-zero units greater than
/// hours. This is an error because it's impossible to determine the length of,
/// e.g., a month without a reference date.
///
/// This can never result in overflow because a `SignedDuration` can represent
/// a bigger span of time than `Span` when limited to units of hours or lower.
///
/// If you need to convert a `Span` to a `SignedDuration` that has non-zero
/// units bigger than hours, then please use [`Span::to_duration`] with a
/// corresponding relative date.
///
/// # Example: maximal span
///
/// This example shows the maximum possible span using units of hours or
/// smaller, and the corresponding `SignedDuration` value:
///
/// ```
/// use jiff::{SignedDuration, Span};
///
/// let sp = Span::new()
/// .hours(175_307_616)
/// .minutes(10_518_456_960i64)
/// .seconds(631_107_417_600i64)
/// .milliseconds(631_107_417_600_000i64)
/// .microseconds(631_107_417_600_000_000i64)
/// .nanoseconds(9_223_372_036_854_775_807i64);
/// let duration = SignedDuration::try_from(sp)?;
/// assert_eq!(duration, SignedDuration::new(3_164_760_460_036, 854_775_807));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
impl TryFrom<Span> for SignedDuration {
type Error = Error;
#[inline]
fn try_from(sp: Span) -> Result<SignedDuration, Error> {
requires_relative_date_err(sp.largest_unit()).context(
"failed to convert span to duration without relative datetime \
(must use `Span::to_duration` instead)",
)?;
Ok(sp.to_duration_invariant())
}
}
/// Converts a [`SignedDuration`] to a `Span`.
///
/// The span returned from this conversion will only ever have non-zero units
/// of seconds or smaller.
///
/// # Errors
///
/// This only fails when the given `SignedDuration` overflows the maximum
/// number of seconds representable by a `Span`.
///
/// # Example
///
/// This shows a basic conversion:
///
/// ```
/// use jiff::{SignedDuration, Span, ToSpan};
///
/// let duration = SignedDuration::new(86_400, 123_456_789);
/// let span = Span::try_from(duration)?;
/// // A duration-to-span conversion always results in a span with
/// // non-zero units no bigger than seconds.
/// assert_eq!(
/// span.fieldwise(),
/// 86_400.seconds().milliseconds(123).microseconds(456).nanoseconds(789),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: rounding
///
/// This example shows how to convert a `SignedDuration` to a `Span`, and then
/// round it up to bigger units given a relative date:
///
/// ```
/// use jiff::{civil::date, SignedDuration, Span, SpanRound, ToSpan, Unit};
///
/// let duration = SignedDuration::new(450 * 86_401, 0);
/// let span = Span::try_from(duration)?;
/// // We get back a simple span of just seconds:
/// assert_eq!(span.fieldwise(), Span::new().seconds(450 * 86_401));
/// // But we can balance it up to bigger units:
/// let options = SpanRound::new()
/// .largest(Unit::Year)
/// .relative(date(2024, 1, 1));
/// assert_eq!(
/// span.round(options)?,
/// 1.year().months(2).days(25).minutes(7).seconds(30).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
impl TryFrom<SignedDuration> for Span {
type Error = Error;
#[inline]
fn try_from(d: SignedDuration) -> Result<Span, Error> {
let seconds = d.as_secs();
let nanoseconds = i64::from(d.subsec_nanos());
let milliseconds = nanoseconds / t::NANOS_PER_MILLI.value();
let microseconds = (nanoseconds % t::NANOS_PER_MILLI.value())
/ t::NANOS_PER_MICRO.value();
let nanoseconds = nanoseconds % t::NANOS_PER_MICRO.value();
let span = Span::new().try_seconds(seconds).with_context(|| {
err!("signed duration {d:?} overflows limits of a Jiff `Span`")
})?;
// These are all OK because `|SignedDuration::subsec_nanos|` is
// guaranteed to return less than 1_000_000_000 nanoseconds. And
// splitting that up into millis, micros and nano components is
// guaranteed to fit into the limits of a `Span`.
Ok(span
.milliseconds(milliseconds)
.microseconds(microseconds)
.nanoseconds(nanoseconds))
}
}
#[cfg(feature = "serde")]
impl serde::Serialize for Span {
#[inline]
fn serialize<S: serde::Serializer>(
&self,
serializer: S,
) -> Result<S::Ok, S::Error> {
serializer.collect_str(self)
}
}
#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for Span {
#[inline]
fn deserialize<D: serde::Deserializer<'de>>(
deserializer: D,
) -> Result<Span, D::Error> {
use serde::de;
struct SpanVisitor;
impl<'de> de::Visitor<'de> for SpanVisitor {
type Value = Span;
fn expecting(
&self,
f: &mut core::fmt::Formatter,
) -> core::fmt::Result {
f.write_str("a span duration string")
}
#[inline]
fn visit_bytes<E: de::Error>(
self,
value: &[u8],
) -> Result<Span, E> {
parse_iso_or_friendly(value).map_err(de::Error::custom)
}
#[inline]
fn visit_str<E: de::Error>(self, value: &str) -> Result<Span, E> {
self.visit_bytes(value.as_bytes())
}
}
deserializer.deserialize_str(SpanVisitor)
}
}
#[cfg(test)]
impl quickcheck::Arbitrary for Span {
fn arbitrary(g: &mut quickcheck::Gen) -> Span {
// In order to sample from the full space of possible spans, we need
// to provide a relative datetime. But if we do that, then it's
// possible the span plus the datetime overflows. So we pick one
// datetime and shrink the size of the span we can produce.
type Nanos = ri64<-631_107_417_600_000_000, 631_107_417_600_000_000>;
let nanos = Nanos::arbitrary(g).get();
let relative =
SpanRelativeTo::from(DateTime::constant(0, 1, 1, 0, 0, 0, 0));
let round =
SpanRound::new().largest(Unit::arbitrary(g)).relative(relative);
Span::new().nanoseconds(nanos).round(round).unwrap()
}
fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Self>> {
alloc::boxed::Box::new(
(
(
self.get_years_ranged(),
self.get_months_ranged(),
self.get_weeks_ranged(),
self.get_days_ranged(),
),
(
self.get_hours_ranged(),
self.get_minutes_ranged(),
self.get_seconds_ranged(),
self.get_milliseconds_ranged(),
),
(
self.get_microseconds_ranged(),
self.get_nanoseconds_ranged(),
),
)
.shrink()
.filter_map(
|(
(years, months, weeks, days),
(hours, minutes, seconds, milliseconds),
(microseconds, nanoseconds),
)| {
let span = Span::new()
.years_ranged(years)
.months_ranged(months)
.weeks_ranged(weeks)
.days_ranged(days)
.hours_ranged(hours)
.minutes_ranged(minutes)
.seconds_ranged(seconds)
.milliseconds_ranged(milliseconds)
.microseconds_ranged(microseconds)
.nanoseconds_ranged(nanoseconds);
Some(span)
},
),
)
}
}
/// A wrapper for [`Span`] that implements the `Hash`, `Eq` and `PartialEq`
/// traits.
///
/// A `SpanFieldwise` is meant to make it easy to compare two spans in a "dumb"
/// way based purely on its unit values, while still providing a speed bump
/// to avoid accidentally doing this comparison on `Span` directly. This is
/// distinct from something like [`Span::compare`] that performs a comparison
/// on the actual elapsed time of two spans.
///
/// It is generally discouraged to use `SpanFieldwise` since spans that
/// represent an equivalent elapsed amount of time may compare unequal.
/// However, in some cases, it is useful to be able to assert precise field
/// values. For example, Jiff itself makes heavy use of fieldwise comparisons
/// for tests.
///
/// # Construction
///
/// While callers may use `SpanFieldwise(span)` (where `span` has type [`Span`])
/// to construct a value of this type, callers may find [`Span::fieldwise`]
/// more convenient. Namely, `Span::fieldwise` may avoid the need to explicitly
/// import `SpanFieldwise`.
///
/// # Trait implementations
///
/// In addition to implementing the `Hash`, `Eq` and `PartialEq` traits, this
/// type also provides `PartialEq` impls for comparing a `Span` with a
/// `SpanFieldwise`. This simplifies comparisons somewhat while still requiring
/// that at least one of the values has an explicit fieldwise comparison type.
///
/// # Safety
///
/// This type is guaranteed to have the same layout in memory as [`Span`].
///
/// # Example: the difference between `SpanFieldwise` and [`Span::compare`]
///
/// In short, `SpanFieldwise` considers `2 hours` and `120 minutes` to be
/// distinct values, but `Span::compare` considers them to be equivalent:
///
/// ```
/// use std::cmp::Ordering;
/// use jiff::ToSpan;
///
/// assert_ne!(120.minutes().fieldwise(), 2.hours().fieldwise());
/// assert_eq!(120.minutes().compare(2.hours())?, Ordering::Equal);
///
/// // These comparisons are allowed between a `Span` and a `SpanFieldwise`.
/// // Namely, as long as one value is "fieldwise," then the comparison is OK.
/// assert_ne!(120.minutes().fieldwise(), 2.hours());
/// assert_ne!(120.minutes(), 2.hours().fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy, Debug, Default)]
#[repr(transparent)]
pub struct SpanFieldwise(pub Span);
// Exists so that things like `-1.day().fieldwise()` works as expected.
impl core::ops::Neg for SpanFieldwise {
type Output = SpanFieldwise;
#[inline]
fn neg(self) -> SpanFieldwise {
SpanFieldwise(self.0.negate())
}
}
impl Eq for SpanFieldwise {}
impl PartialEq for SpanFieldwise {
fn eq(&self, rhs: &SpanFieldwise) -> bool {
self.0.sign == rhs.0.sign
&& self.0.years == rhs.0.years
&& self.0.months == rhs.0.months
&& self.0.weeks == rhs.0.weeks
&& self.0.days == rhs.0.days
&& self.0.hours == rhs.0.hours
&& self.0.minutes == rhs.0.minutes
&& self.0.seconds == rhs.0.seconds
&& self.0.milliseconds == rhs.0.milliseconds
&& self.0.microseconds == rhs.0.microseconds
&& self.0.nanoseconds == rhs.0.nanoseconds
}
}
impl<'a> PartialEq<SpanFieldwise> for &'a SpanFieldwise {
fn eq(&self, rhs: &SpanFieldwise) -> bool {
*self == rhs
}
}
impl PartialEq<Span> for SpanFieldwise {
fn eq(&self, rhs: &Span) -> bool {
self == rhs.fieldwise()
}
}
impl PartialEq<SpanFieldwise> for Span {
fn eq(&self, rhs: &SpanFieldwise) -> bool {
self.fieldwise() == *rhs
}
}
impl<'a> PartialEq<SpanFieldwise> for &'a Span {
fn eq(&self, rhs: &SpanFieldwise) -> bool {
self.fieldwise() == *rhs
}
}
impl core::hash::Hash for SpanFieldwise {
fn hash<H: core::hash::Hasher>(&self, state: &mut H) {
self.0.sign.hash(state);
self.0.years.hash(state);
self.0.months.hash(state);
self.0.weeks.hash(state);
self.0.days.hash(state);
self.0.hours.hash(state);
self.0.minutes.hash(state);
self.0.seconds.hash(state);
self.0.milliseconds.hash(state);
self.0.microseconds.hash(state);
self.0.nanoseconds.hash(state);
}
}
impl From<Span> for SpanFieldwise {
fn from(span: Span) -> SpanFieldwise {
SpanFieldwise(span)
}
}
impl From<SpanFieldwise> for Span {
fn from(span: SpanFieldwise) -> Span {
span.0
}
}
/// A trait for enabling concise literals for creating [`Span`] values.
///
/// In short, this trait lets you write something like `5.seconds()` or
/// `1.day()` to create a [`Span`]. Once a `Span` has been created, you can
/// use its mutator methods to add more fields. For example,
/// `1.day().hours(10)` is equivalent to `Span::new().days(1).hours(10)`.
///
/// This trait is implemented for the following integer types: `i8`, `i16`,
/// `i32` and `i64`.
///
/// Note that this trait is provided as a convenience and should generally
/// only be used for literals in your source code. You should not use this
/// trait on numbers provided by end users. Namely, if the number provided
/// is not within Jiff's span limits, then these trait methods will panic.
/// Instead, use fallible mutator constructors like [`Span::try_days`]
/// or [`Span::try_seconds`].
///
/// # Example
///
/// ```
/// use jiff::ToSpan;
///
/// assert_eq!(5.days().to_string(), "P5D");
/// assert_eq!(5.days().hours(10).to_string(), "P5DT10H");
///
/// // Negation works and it doesn't matter where the sign goes. It can be
/// // applied to the span itself or to the integer.
/// assert_eq!((-5.days()).to_string(), "-P5D");
/// assert_eq!((-5).days().to_string(), "-P5D");
/// ```
///
/// # Example: alternative via span parsing
///
/// Another way of tersely building a `Span` value is by parsing a ISO 8601
/// duration string:
///
/// ```
/// use jiff::Span;
///
/// let span = "P5y2m15dT23h30m10s".parse::<Span>()?;
/// assert_eq!(
/// span.fieldwise(),
/// Span::new().years(5).months(2).days(15).hours(23).minutes(30).seconds(10),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
pub trait ToSpan: Sized {
/// Create a new span from this integer in units of years.
///
/// # Panics
///
/// When `Span::new().years(self)` would panic.
fn years(self) -> Span;
/// Create a new span from this integer in units of months.
///
/// # Panics
///
/// When `Span::new().months(self)` would panic.
fn months(self) -> Span;
/// Create a new span from this integer in units of weeks.
///
/// # Panics
///
/// When `Span::new().weeks(self)` would panic.
fn weeks(self) -> Span;
/// Create a new span from this integer in units of days.
///
/// # Panics
///
/// When `Span::new().days(self)` would panic.
fn days(self) -> Span;
/// Create a new span from this integer in units of hours.
///
/// # Panics
///
/// When `Span::new().hours(self)` would panic.
fn hours(self) -> Span;
/// Create a new span from this integer in units of minutes.
///
/// # Panics
///
/// When `Span::new().minutes(self)` would panic.
fn minutes(self) -> Span;
/// Create a new span from this integer in units of seconds.
///
/// # Panics
///
/// When `Span::new().seconds(self)` would panic.
fn seconds(self) -> Span;
/// Create a new span from this integer in units of milliseconds.
///
/// # Panics
///
/// When `Span::new().milliseconds(self)` would panic.
fn milliseconds(self) -> Span;
/// Create a new span from this integer in units of microseconds.
///
/// # Panics
///
/// When `Span::new().microseconds(self)` would panic.
fn microseconds(self) -> Span;
/// Create a new span from this integer in units of nanoseconds.
///
/// # Panics
///
/// When `Span::new().nanoseconds(self)` would panic.
fn nanoseconds(self) -> Span;
/// Equivalent to `years()`, but reads better for singular units.
#[inline]
fn year(self) -> Span {
self.years()
}
/// Equivalent to `months()`, but reads better for singular units.
#[inline]
fn month(self) -> Span {
self.months()
}
/// Equivalent to `weeks()`, but reads better for singular units.
#[inline]
fn week(self) -> Span {
self.weeks()
}
/// Equivalent to `days()`, but reads better for singular units.
#[inline]
fn day(self) -> Span {
self.days()
}
/// Equivalent to `hours()`, but reads better for singular units.
#[inline]
fn hour(self) -> Span {
self.hours()
}
/// Equivalent to `minutes()`, but reads better for singular units.
#[inline]
fn minute(self) -> Span {
self.minutes()
}
/// Equivalent to `seconds()`, but reads better for singular units.
#[inline]
fn second(self) -> Span {
self.seconds()
}
/// Equivalent to `milliseconds()`, but reads better for singular units.
#[inline]
fn millisecond(self) -> Span {
self.milliseconds()
}
/// Equivalent to `microseconds()`, but reads better for singular units.
#[inline]
fn microsecond(self) -> Span {
self.microseconds()
}
/// Equivalent to `nanoseconds()`, but reads better for singular units.
#[inline]
fn nanosecond(self) -> Span {
self.nanoseconds()
}
}
macro_rules! impl_to_span {
($ty:ty) => {
impl ToSpan for $ty {
#[inline]
fn years(self) -> Span {
Span::new().years(self)
}
#[inline]
fn months(self) -> Span {
Span::new().months(self)
}
#[inline]
fn weeks(self) -> Span {
Span::new().weeks(self)
}
#[inline]
fn days(self) -> Span {
Span::new().days(self)
}
#[inline]
fn hours(self) -> Span {
Span::new().hours(self)
}
#[inline]
fn minutes(self) -> Span {
Span::new().minutes(self)
}
#[inline]
fn seconds(self) -> Span {
Span::new().seconds(self)
}
#[inline]
fn milliseconds(self) -> Span {
Span::new().milliseconds(self)
}
#[inline]
fn microseconds(self) -> Span {
Span::new().microseconds(self)
}
#[inline]
fn nanoseconds(self) -> Span {
Span::new().nanoseconds(self)
}
}
};
}
impl_to_span!(i8);
impl_to_span!(i16);
impl_to_span!(i32);
impl_to_span!(i64);
/// A way to refer to a single calendar or clock unit.
///
/// This type is principally used in APIs involving a [`Span`], which is a
/// duration of time. For example, routines like [`Zoned::until`] permit
/// specifying the largest unit of the span returned:
///
/// ```
/// use jiff::{Unit, Zoned};
///
/// let zdt1: Zoned = "2024-07-06 17:40-04[America/New_York]".parse()?;
/// let zdt2: Zoned = "2024-11-05 08:00-05[America/New_York]".parse()?;
/// let span = zdt1.until((Unit::Year, &zdt2))?;
/// assert_eq!(format!("{span:#}"), "3mo 29d 14h 20m");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// But a `Unit` is also used in APIs for rounding datetimes themselves:
///
/// ```
/// use jiff::{Unit, Zoned};
///
/// let zdt: Zoned = "2024-07-06 17:44:22.158-04[America/New_York]".parse()?;
/// let nearest_minute = zdt.round(Unit::Minute)?;
/// assert_eq!(
/// nearest_minute.to_string(),
/// "2024-07-06T17:44:00-04:00[America/New_York]",
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: ordering
///
/// This example demonstrates that `Unit` has an ordering defined such that
/// bigger units compare greater than smaller units.
///
/// ```
/// use jiff::Unit;
///
/// assert!(Unit::Year > Unit::Nanosecond);
/// assert!(Unit::Day > Unit::Hour);
/// assert!(Unit::Hour > Unit::Minute);
/// assert!(Unit::Hour > Unit::Minute);
/// assert_eq!(Unit::Hour, Unit::Hour);
/// ```
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
pub enum Unit {
/// A Gregorian calendar year. It usually has 365 days for non-leap years,
/// and 366 days for leap years.
Year = 9,
/// A Gregorian calendar month. It usually has one of 28, 29, 30 or 31
/// days.
Month = 8,
/// A week is 7 days that either begins on Sunday or Monday.
Week = 7,
/// A day is usually 24 hours, but some days may have different lengths
/// due to time zone transitions.
Day = 6,
/// An hour is always 60 minutes.
Hour = 5,
/// A minute is always 60 seconds. (Jiff behaves as if leap seconds do not
/// exist.)
Minute = 4,
/// A second is always 1,000 milliseconds.
Second = 3,
/// A millisecond is always 1,000 microseconds.
Millisecond = 2,
/// A microsecond is always 1,000 nanoseconds.
Microsecond = 1,
/// A nanosecond is the smallest granularity of time supported by Jiff.
Nanosecond = 0,
}
impl Unit {
/// Returns the next biggest unit, if one exists.
pub(crate) fn next(&self) -> Option<Unit> {
match *self {
Unit::Year => None,
Unit::Month => Some(Unit::Year),
Unit::Week => Some(Unit::Month),
Unit::Day => Some(Unit::Week),
Unit::Hour => Some(Unit::Day),
Unit::Minute => Some(Unit::Hour),
Unit::Second => Some(Unit::Minute),
Unit::Millisecond => Some(Unit::Second),
Unit::Microsecond => Some(Unit::Millisecond),
Unit::Nanosecond => Some(Unit::Microsecond),
}
}
/// Returns the number of nanoseconds in this unit as a 128-bit integer.
///
/// # Panics
///
/// When this unit is always variable. That is, years or months.
pub(crate) fn nanoseconds(self) -> NoUnits128 {
match self {
Unit::Nanosecond => Constant(1),
Unit::Microsecond => t::NANOS_PER_MICRO,
Unit::Millisecond => t::NANOS_PER_MILLI,
Unit::Second => t::NANOS_PER_SECOND,
Unit::Minute => t::NANOS_PER_MINUTE,
Unit::Hour => t::NANOS_PER_HOUR,
Unit::Day => t::NANOS_PER_CIVIL_DAY,
Unit::Week => t::NANOS_PER_CIVIL_WEEK,
unit => unreachable!("{unit:?} has no definitive time interval"),
}
.rinto()
}
/// Returns true when this unit is definitively variable.
///
/// In effect, this is any unit bigger than 'day', because any such unit
/// can vary in time depending on its reference point. A 'day' can as well,
/// but we sorta special case 'day' to mean '24 hours' for cases where
/// the user is dealing with civil time.
fn is_variable(self) -> bool {
matches!(self, Unit::Year | Unit::Month | Unit::Week | Unit::Day)
}
/// A human readable singular description of this unit of time.
pub(crate) fn singular(&self) -> &'static str {
match *self {
Unit::Year => "year",
Unit::Month => "month",
Unit::Week => "week",
Unit::Day => "day",
Unit::Hour => "hour",
Unit::Minute => "minute",
Unit::Second => "second",
Unit::Millisecond => "millisecond",
Unit::Microsecond => "microsecond",
Unit::Nanosecond => "nanosecond",
}
}
/// A human readable plural description of this unit of time.
pub(crate) fn plural(&self) -> &'static str {
match *self {
Unit::Year => "years",
Unit::Month => "months",
Unit::Week => "weeks",
Unit::Day => "days",
Unit::Hour => "hours",
Unit::Minute => "minutes",
Unit::Second => "seconds",
Unit::Millisecond => "milliseconds",
Unit::Microsecond => "microseconds",
Unit::Nanosecond => "nanoseconds",
}
}
/// A very succinct label corresponding to this unit.
pub(crate) fn compact(&self) -> &'static str {
match *self {
Unit::Year => "y",
Unit::Month => "mo",
Unit::Week => "w",
Unit::Day => "d",
Unit::Hour => "h",
Unit::Minute => "m",
Unit::Second => "s",
Unit::Millisecond => "ms",
Unit::Microsecond => "µs",
Unit::Nanosecond => "ns",
}
}
/// The inverse of `unit as usize`.
fn from_usize(n: usize) -> Option<Unit> {
match n {
0 => Some(Unit::Nanosecond),
1 => Some(Unit::Microsecond),
2 => Some(Unit::Millisecond),
3 => Some(Unit::Second),
4 => Some(Unit::Minute),
5 => Some(Unit::Hour),
6 => Some(Unit::Day),
7 => Some(Unit::Week),
8 => Some(Unit::Month),
9 => Some(Unit::Year),
_ => None,
}
}
}
#[cfg(test)]
impl quickcheck::Arbitrary for Unit {
fn arbitrary(g: &mut quickcheck::Gen) -> Unit {
Unit::from_usize(usize::arbitrary(g) % 10).unwrap()
}
fn shrink(&self) -> alloc::boxed::Box<dyn Iterator<Item = Self>> {
alloc::boxed::Box::new(
(*self as usize)
.shrink()
.map(|n| Unit::from_usize(n % 10).unwrap()),
)
}
}
/// Options for [`Span::checked_add`] and [`Span::checked_sub`].
///
/// This type provides a way to ergonomically add two spans with an optional
/// relative datetime. Namely, a relative datetime is only needed when at least
/// one of the two spans being added (or subtracted) has a non-zero calendar
/// unit (years, months, weeks or days). Otherwise, an error will be returned.
///
/// Callers may use [`SpanArithmetic::days_are_24_hours`] to opt into 24-hour
/// invariant days (and 7-day weeks) without providing a relative datetime.
///
/// The main way to construct values of this type is with its `From` trait
/// implementations:
///
/// * `From<Span> for SpanArithmetic` adds (or subtracts) the given span to the
/// receiver in [`Span::checked_add`] (or [`Span::checked_sub`]).
/// * `From<(Span, civil::Date)> for SpanArithmetic` adds (or subtracts)
/// the given span to the receiver in [`Span::checked_add`] (or
/// [`Span::checked_sub`]), relative to the given date. There are also `From`
/// implementations for `civil::DateTime`, `Zoned` and [`SpanRelativeTo`].
///
/// # Example
///
/// ```
/// use jiff::ToSpan;
///
/// assert_eq!(
/// 1.hour().checked_add(30.minutes())?,
/// 1.hour().minutes(30).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy, Debug)]
pub struct SpanArithmetic<'a> {
duration: Duration,
relative: Option<SpanRelativeTo<'a>>,
}
impl<'a> SpanArithmetic<'a> {
/// This is a convenience function for setting the relative option on
/// this configuration to [`SpanRelativeTo::days_are_24_hours`].
///
/// # Example
///
/// When doing arithmetic on spans involving days, either a relative
/// datetime must be provided, or a special assertion opting into 24-hour
/// days is required. Otherwise, you get an error.
///
/// ```
/// use jiff::{SpanArithmetic, ToSpan};
///
/// let span1 = 2.days().hours(12);
/// let span2 = 12.hours();
/// // No relative date provided, which results in an error.
/// assert_eq!(
/// span1.checked_add(span2).unwrap_err().to_string(),
/// "using unit 'day' in a span or configuration requires that \
/// either a relative reference time be given or \
/// `SpanRelativeTo::days_are_24_hours()` is used to indicate \
/// invariant 24-hour days, but neither were provided",
/// );
/// let sum = span1.checked_add(
/// SpanArithmetic::from(span2).days_are_24_hours(),
/// )?;
/// assert_eq!(sum, 3.days().fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn days_are_24_hours(self) -> SpanArithmetic<'a> {
self.relative(SpanRelativeTo::days_are_24_hours())
}
}
impl<'a> SpanArithmetic<'a> {
#[inline]
fn relative<R: Into<SpanRelativeTo<'a>>>(
self,
relative: R,
) -> SpanArithmetic<'a> {
SpanArithmetic { relative: Some(relative.into()), ..self }
}
#[inline]
fn checked_add(self, span1: Span) -> Result<Span, Error> {
match self.duration.to_signed()? {
SDuration::Span(span2) => {
span1.checked_add_span(self.relative, &span2)
}
SDuration::Absolute(dur2) => {
span1.checked_add_duration(self.relative, dur2)
}
}
}
}
impl From<Span> for SpanArithmetic<'static> {
fn from(span: Span) -> SpanArithmetic<'static> {
let duration = Duration::from(span);
SpanArithmetic { duration, relative: None }
}
}
impl<'a> From<&'a Span> for SpanArithmetic<'static> {
fn from(span: &'a Span) -> SpanArithmetic<'static> {
let duration = Duration::from(*span);
SpanArithmetic { duration, relative: None }
}
}
impl From<(Span, Date)> for SpanArithmetic<'static> {
#[inline]
fn from((span, date): (Span, Date)) -> SpanArithmetic<'static> {
SpanArithmetic::from(span).relative(date)
}
}
impl From<(Span, DateTime)> for SpanArithmetic<'static> {
#[inline]
fn from((span, datetime): (Span, DateTime)) -> SpanArithmetic<'static> {
SpanArithmetic::from(span).relative(datetime)
}
}
impl<'a> From<(Span, &'a Zoned)> for SpanArithmetic<'a> {
#[inline]
fn from((span, zoned): (Span, &'a Zoned)) -> SpanArithmetic<'a> {
SpanArithmetic::from(span).relative(zoned)
}
}
impl<'a> From<(Span, SpanRelativeTo<'a>)> for SpanArithmetic<'a> {
#[inline]
fn from(
(span, relative): (Span, SpanRelativeTo<'a>),
) -> SpanArithmetic<'a> {
SpanArithmetic::from(span).relative(relative)
}
}
impl<'a> From<(&'a Span, Date)> for SpanArithmetic<'static> {
#[inline]
fn from((span, date): (&'a Span, Date)) -> SpanArithmetic<'static> {
SpanArithmetic::from(span).relative(date)
}
}
impl<'a> From<(&'a Span, DateTime)> for SpanArithmetic<'static> {
#[inline]
fn from(
(span, datetime): (&'a Span, DateTime),
) -> SpanArithmetic<'static> {
SpanArithmetic::from(span).relative(datetime)
}
}
impl<'a, 'b> From<(&'a Span, &'b Zoned)> for SpanArithmetic<'b> {
#[inline]
fn from((span, zoned): (&'a Span, &'b Zoned)) -> SpanArithmetic<'b> {
SpanArithmetic::from(span).relative(zoned)
}
}
impl<'a, 'b> From<(&'a Span, SpanRelativeTo<'b>)> for SpanArithmetic<'b> {
#[inline]
fn from(
(span, relative): (&'a Span, SpanRelativeTo<'b>),
) -> SpanArithmetic<'b> {
SpanArithmetic::from(span).relative(relative)
}
}
impl From<SignedDuration> for SpanArithmetic<'static> {
fn from(duration: SignedDuration) -> SpanArithmetic<'static> {
let duration = Duration::from(duration);
SpanArithmetic { duration, relative: None }
}
}
impl From<(SignedDuration, Date)> for SpanArithmetic<'static> {
#[inline]
fn from(
(duration, date): (SignedDuration, Date),
) -> SpanArithmetic<'static> {
SpanArithmetic::from(duration).relative(date)
}
}
impl From<(SignedDuration, DateTime)> for SpanArithmetic<'static> {
#[inline]
fn from(
(duration, datetime): (SignedDuration, DateTime),
) -> SpanArithmetic<'static> {
SpanArithmetic::from(duration).relative(datetime)
}
}
impl<'a> From<(SignedDuration, &'a Zoned)> for SpanArithmetic<'a> {
#[inline]
fn from(
(duration, zoned): (SignedDuration, &'a Zoned),
) -> SpanArithmetic<'a> {
SpanArithmetic::from(duration).relative(zoned)
}
}
impl From<UnsignedDuration> for SpanArithmetic<'static> {
fn from(duration: UnsignedDuration) -> SpanArithmetic<'static> {
let duration = Duration::from(duration);
SpanArithmetic { duration, relative: None }
}
}
impl From<(UnsignedDuration, Date)> for SpanArithmetic<'static> {
#[inline]
fn from(
(duration, date): (UnsignedDuration, Date),
) -> SpanArithmetic<'static> {
SpanArithmetic::from(duration).relative(date)
}
}
impl From<(UnsignedDuration, DateTime)> for SpanArithmetic<'static> {
#[inline]
fn from(
(duration, datetime): (UnsignedDuration, DateTime),
) -> SpanArithmetic<'static> {
SpanArithmetic::from(duration).relative(datetime)
}
}
impl<'a> From<(UnsignedDuration, &'a Zoned)> for SpanArithmetic<'a> {
#[inline]
fn from(
(duration, zoned): (UnsignedDuration, &'a Zoned),
) -> SpanArithmetic<'a> {
SpanArithmetic::from(duration).relative(zoned)
}
}
/// Options for [`Span::compare`].
///
/// This type provides a way to ergonomically compare two spans with an
/// optional relative datetime. Namely, a relative datetime is only needed when
/// at least one of the two spans being compared has a non-zero calendar unit
/// (years, months, weeks or days). Otherwise, an error will be returned.
///
/// Callers may use [`SpanCompare::days_are_24_hours`] to opt into 24-hour
/// invariant days (and 7-day weeks) without providing a relative datetime.
///
/// The main way to construct values of this type is with its `From` trait
/// implementations:
///
/// * `From<Span> for SpanCompare` compares the given span to the receiver
/// in [`Span::compare`].
/// * `From<(Span, civil::Date)> for SpanCompare` compares the given span
/// to the receiver in [`Span::compare`], relative to the given date. There
/// are also `From` implementations for `civil::DateTime`, `Zoned` and
/// [`SpanRelativeTo`].
///
/// # Example
///
/// ```
/// use jiff::ToSpan;
///
/// let span1 = 3.hours();
/// let span2 = 180.minutes();
/// assert_eq!(span1.compare(span2)?, std::cmp::Ordering::Equal);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy, Debug)]
pub struct SpanCompare<'a> {
span: Span,
relative: Option<SpanRelativeTo<'a>>,
}
impl<'a> SpanCompare<'a> {
/// This is a convenience function for setting the relative option on
/// this configuration to [`SpanRelativeTo::days_are_24_hours`].
///
/// # Example
///
/// When comparing spans involving days, either a relative datetime must be
/// provided, or a special assertion opting into 24-hour days is
/// required. Otherwise, you get an error.
///
/// ```
/// use jiff::{SpanCompare, ToSpan, Unit};
///
/// let span1 = 2.days().hours(12);
/// let span2 = 60.hours();
/// // No relative date provided, which results in an error.
/// assert_eq!(
/// span1.compare(span2).unwrap_err().to_string(),
/// "using unit 'day' in a span or configuration requires that \
/// either a relative reference time be given or \
/// `SpanRelativeTo::days_are_24_hours()` is used to indicate \
/// invariant 24-hour days, but neither were provided",
/// );
/// let ordering = span1.compare(
/// SpanCompare::from(span2).days_are_24_hours(),
/// )?;
/// assert_eq!(ordering, std::cmp::Ordering::Equal);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn days_are_24_hours(self) -> SpanCompare<'a> {
self.relative(SpanRelativeTo::days_are_24_hours())
}
}
impl<'a> SpanCompare<'a> {
#[inline]
fn new(span: Span) -> SpanCompare<'static> {
SpanCompare { span, relative: None }
}
#[inline]
fn relative<R: Into<SpanRelativeTo<'a>>>(
self,
relative: R,
) -> SpanCompare<'a> {
SpanCompare { relative: Some(relative.into()), ..self }
}
fn compare(self, span: Span) -> Result<Ordering, Error> {
let (span1, span2) = (span, self.span);
let unit = span1.largest_unit().max(span2.largest_unit());
let start = match self.relative {
Some(r) => match r.to_relative(unit)? {
Some(r) => r,
None => {
let nanos1 = span1.to_invariant_nanoseconds();
let nanos2 = span2.to_invariant_nanoseconds();
return Ok(nanos1.cmp(&nanos2));
}
},
None => {
requires_relative_date_err(unit)?;
let nanos1 = span1.to_invariant_nanoseconds();
let nanos2 = span2.to_invariant_nanoseconds();
return Ok(nanos1.cmp(&nanos2));
}
};
let end1 = start.checked_add(span1)?.to_nanosecond();
let end2 = start.checked_add(span2)?.to_nanosecond();
Ok(end1.cmp(&end2))
}
}
impl From<Span> for SpanCompare<'static> {
fn from(span: Span) -> SpanCompare<'static> {
SpanCompare::new(span)
}
}
impl<'a> From<&'a Span> for SpanCompare<'static> {
fn from(span: &'a Span) -> SpanCompare<'static> {
SpanCompare::new(*span)
}
}
impl From<(Span, Date)> for SpanCompare<'static> {
#[inline]
fn from((span, date): (Span, Date)) -> SpanCompare<'static> {
SpanCompare::from(span).relative(date)
}
}
impl From<(Span, DateTime)> for SpanCompare<'static> {
#[inline]
fn from((span, datetime): (Span, DateTime)) -> SpanCompare<'static> {
SpanCompare::from(span).relative(datetime)
}
}
impl<'a> From<(Span, &'a Zoned)> for SpanCompare<'a> {
#[inline]
fn from((span, zoned): (Span, &'a Zoned)) -> SpanCompare<'a> {
SpanCompare::from(span).relative(zoned)
}
}
impl<'a> From<(Span, SpanRelativeTo<'a>)> for SpanCompare<'a> {
#[inline]
fn from((span, relative): (Span, SpanRelativeTo<'a>)) -> SpanCompare<'a> {
SpanCompare::from(span).relative(relative)
}
}
impl<'a> From<(&'a Span, Date)> for SpanCompare<'static> {
#[inline]
fn from((span, date): (&'a Span, Date)) -> SpanCompare<'static> {
SpanCompare::from(span).relative(date)
}
}
impl<'a> From<(&'a Span, DateTime)> for SpanCompare<'static> {
#[inline]
fn from((span, datetime): (&'a Span, DateTime)) -> SpanCompare<'static> {
SpanCompare::from(span).relative(datetime)
}
}
impl<'a, 'b> From<(&'a Span, &'b Zoned)> for SpanCompare<'b> {
#[inline]
fn from((span, zoned): (&'a Span, &'b Zoned)) -> SpanCompare<'b> {
SpanCompare::from(span).relative(zoned)
}
}
impl<'a, 'b> From<(&'a Span, SpanRelativeTo<'b>)> for SpanCompare<'b> {
#[inline]
fn from(
(span, relative): (&'a Span, SpanRelativeTo<'b>),
) -> SpanCompare<'b> {
SpanCompare::from(span).relative(relative)
}
}
/// Options for [`Span::total`].
///
/// This type provides a way to ergonomically determine the number of a
/// particular unit in a span, with a potentially fractional component, with
/// an optional relative datetime. Namely, a relative datetime is only needed
/// when the span has a non-zero calendar unit (years, months, weeks or days).
/// Otherwise, an error will be returned.
///
/// Callers may use [`SpanTotal::days_are_24_hours`] to opt into 24-hour
/// invariant days (and 7-day weeks) without providing a relative datetime.
///
/// The main way to construct values of this type is with its `From` trait
/// implementations:
///
/// * `From<Unit> for SpanTotal` computes a total for the given unit in the
/// receiver span for [`Span::total`].
/// * `From<(Unit, civil::Date)> for SpanTotal` computes a total for the given
/// unit in the receiver span for [`Span::total`], relative to the given date.
/// There are also `From` implementations for `civil::DateTime`, `Zoned` and
/// [`SpanRelativeTo`].
///
/// # Example
///
/// This example shows how to find the number of seconds in a particular span:
///
/// ```
/// use jiff::{ToSpan, Unit};
///
/// let span = 3.hours().minutes(10);
/// assert_eq!(span.total(Unit::Second)?, 11_400.0);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: 24 hour days
///
/// This shows how to find the total number of 24 hour days in `123,456,789`
/// seconds.
///
/// ```
/// use jiff::{SpanTotal, ToSpan, Unit};
///
/// let span = 123_456_789.seconds();
/// assert_eq!(
/// span.total(SpanTotal::from(Unit::Day).days_are_24_hours())?,
/// 1428.8980208333332,
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: DST is taken into account
///
/// The month of March 2024 in `America/New_York` had 31 days, but one of those
/// days was 23 hours long due a transition into daylight saving time:
///
/// ```
/// use jiff::{civil::date, ToSpan, Unit};
///
/// let span = 744.hours();
/// let relative = date(2024, 3, 1).in_tz("America/New_York")?;
/// // Because of the short day, 744 hours is actually a little *more* than
/// // 1 month starting from 2024-03-01.
/// assert_eq!(span.total((Unit::Month, &relative))?, 1.0013888888888889);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Now compare what happens when the relative datetime is civil and not
/// time zone aware:
///
/// ```
/// use jiff::{civil::date, ToSpan, Unit};
///
/// let span = 744.hours();
/// let relative = date(2024, 3, 1);
/// assert_eq!(span.total((Unit::Month, relative))?, 1.0);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy, Debug)]
pub struct SpanTotal<'a> {
unit: Unit,
relative: Option<SpanRelativeTo<'a>>,
}
impl<'a> SpanTotal<'a> {
/// This is a convenience function for setting the relative option on
/// this configuration to [`SpanRelativeTo::days_are_24_hours`].
///
/// # Example
///
/// When computing the total duration for spans involving days, either a
/// relative datetime must be provided, or a special assertion opting into
/// 24-hour days is required. Otherwise, you get an error.
///
/// ```
/// use jiff::{civil::date, SpanTotal, ToSpan, Unit};
///
/// let span = 2.days().hours(12);
///
/// // No relative date provided, which results in an error.
/// assert_eq!(
/// span.total(Unit::Hour).unwrap_err().to_string(),
/// "using unit 'day' in a span or configuration requires that either \
/// a relative reference time be given or \
/// `SpanRelativeTo::days_are_24_hours()` is used to indicate \
/// invariant 24-hour days, but neither were provided",
/// );
///
/// // If we can assume all days are 24 hours, then we can assert it:
/// let total = span.total(
/// SpanTotal::from(Unit::Hour).days_are_24_hours(),
/// )?;
/// assert_eq!(total, 60.0);
///
/// // Or provide a relative datetime, which is preferred if possible:
/// let total = span.total((Unit::Hour, date(2025, 1, 26)))?;
/// assert_eq!(total, 60.0);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn days_are_24_hours(self) -> SpanTotal<'a> {
self.relative(SpanRelativeTo::days_are_24_hours())
}
}
impl<'a> SpanTotal<'a> {
#[inline]
fn new(unit: Unit) -> SpanTotal<'static> {
SpanTotal { unit, relative: None }
}
#[inline]
fn relative<R: Into<SpanRelativeTo<'a>>>(
self,
relative: R,
) -> SpanTotal<'a> {
SpanTotal { relative: Some(relative.into()), ..self }
}
fn total(self, span: Span) -> Result<f64, Error> {
let max_unit = self.unit.max(span.largest_unit());
let relative = match self.relative {
Some(r) => match r.to_relative(max_unit)? {
Some(r) => r,
None => {
return Ok(self.total_invariant(span));
}
},
None => {
requires_relative_date_err(max_unit)?;
return Ok(self.total_invariant(span));
}
};
let relspan = relative.into_relative_span(self.unit, span)?;
if !self.unit.is_variable() {
return Ok(self.total_invariant(relspan.span));
}
assert!(self.unit >= Unit::Day);
let sign = relspan.span.get_sign_ranged();
let (relative_start, relative_end) = match relspan.kind {
RelativeSpanKind::Civil { start, end } => {
let start = Relative::Civil(start);
let end = Relative::Civil(end);
(start, end)
}
RelativeSpanKind::Zoned { start, end } => {
let start = Relative::Zoned(start);
let end = Relative::Zoned(end);
(start, end)
}
};
let (relative0, relative1) = clamp_relative_span(
&relative_start,
relspan.span.without_lower(self.unit),
self.unit,
sign.rinto(),
)?;
let denom = (relative1 - relative0).get() as f64;
let numer = (relative_end.to_nanosecond() - relative0).get() as f64;
let unit_val = relspan.span.get_units_ranged(self.unit).get() as f64;
Ok(unit_val + (numer / denom) * (sign.get() as f64))
}
#[inline]
fn total_invariant(&self, span: Span) -> f64 {
assert!(self.unit <= Unit::Week);
let nanos = span.to_invariant_nanoseconds();
(nanos.get() as f64) / (self.unit.nanoseconds().get() as f64)
}
}
impl From<Unit> for SpanTotal<'static> {
#[inline]
fn from(unit: Unit) -> SpanTotal<'static> {
SpanTotal::new(unit)
}
}
impl From<(Unit, Date)> for SpanTotal<'static> {
#[inline]
fn from((unit, date): (Unit, Date)) -> SpanTotal<'static> {
SpanTotal::from(unit).relative(date)
}
}
impl From<(Unit, DateTime)> for SpanTotal<'static> {
#[inline]
fn from((unit, datetime): (Unit, DateTime)) -> SpanTotal<'static> {
SpanTotal::from(unit).relative(datetime)
}
}
impl<'a> From<(Unit, &'a Zoned)> for SpanTotal<'a> {
#[inline]
fn from((unit, zoned): (Unit, &'a Zoned)) -> SpanTotal<'a> {
SpanTotal::from(unit).relative(zoned)
}
}
impl<'a> From<(Unit, SpanRelativeTo<'a>)> for SpanTotal<'a> {
#[inline]
fn from((unit, relative): (Unit, SpanRelativeTo<'a>)) -> SpanTotal<'a> {
SpanTotal::from(unit).relative(relative)
}
}
/// Options for [`Span::round`].
///
/// This type provides a way to configure the rounding of a span. This
/// includes setting the smallest unit (i.e., the unit to round), the
/// largest unit, the rounding increment, the rounding mode (e.g., "ceil" or
/// "truncate") and the datetime that the span is relative to.
///
/// `Span::round` accepts anything that implements `Into<SpanRound>`. There are
/// a few key trait implementations that make this convenient:
///
/// * `From<Unit> for SpanRound` will construct a rounding configuration where
/// the smallest unit is set to the one given.
/// * `From<(Unit, i64)> for SpanRound` will construct a rounding configuration
/// where the smallest unit and the rounding increment are set to the ones
/// given.
///
/// In order to set other options (like the largest unit, the rounding mode
/// and the relative datetime), one must explicitly create a `SpanRound` and
/// pass it to `Span::round`.
///
/// # Example
///
/// This example shows how to find how many full 3 month quarters are in a
/// particular span of time.
///
/// ```
/// use jiff::{civil::date, RoundMode, SpanRound, ToSpan, Unit};
///
/// let span1 = 10.months().days(15);
/// let round = SpanRound::new()
/// .smallest(Unit::Month)
/// .increment(3)
/// .mode(RoundMode::Trunc)
/// // A relative datetime must be provided when
/// // rounding involves calendar units.
/// .relative(date(2024, 1, 1));
/// let span2 = span1.round(round)?;
/// assert_eq!(span2.get_months() / 3, 3);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy, Debug)]
pub struct SpanRound<'a> {
largest: Option<Unit>,
smallest: Unit,
mode: RoundMode,
increment: i64,
relative: Option<SpanRelativeTo<'a>>,
}
impl<'a> SpanRound<'a> {
/// Create a new default configuration for rounding a span via
/// [`Span::round`].
///
/// The default configuration does no rounding.
#[inline]
pub fn new() -> SpanRound<'static> {
SpanRound {
largest: None,
smallest: Unit::Nanosecond,
mode: RoundMode::HalfExpand,
increment: 1,
relative: None,
}
}
/// Set the smallest units allowed in the span returned. These are the
/// units that the span is rounded to.
///
/// # Errors
///
/// The smallest units must be no greater than the largest units. If this
/// is violated, then rounding a span with this configuration will result
/// in an error.
///
/// If a smallest unit bigger than days is selected without a relative
/// datetime reference point, then an error is returned when using this
/// configuration with [`Span::round`].
///
/// # Example
///
/// A basic example that rounds to the nearest minute:
///
/// ```
/// use jiff::{ToSpan, Unit};
///
/// let span = 15.minutes().seconds(46);
/// assert_eq!(span.round(Unit::Minute)?, 16.minutes().fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn smallest(self, unit: Unit) -> SpanRound<'a> {
SpanRound { smallest: unit, ..self }
}
/// Set the largest units allowed in the span returned.
///
/// When a largest unit is not specified, then it defaults to the largest
/// non-zero unit that is at least as big as the configured smallest
/// unit. For example, given a span of `2 months 17 hours`, the default
/// largest unit would be `Unit::Month`. The default implies that a span's
/// units do not get "bigger" than what was given.
///
/// Once a largest unit is set, there is no way to change this rounding
/// configuration back to using the "automatic" default. Instead, callers
/// must create a new configuration.
///
/// If a largest unit is set and no other options are set, then the
/// rounding operation can be said to be a "re-balancing." That is, the
/// span won't lose precision, but the way in which it is expressed may
/// change.
///
/// # Errors
///
/// The largest units, when set, must be at least as big as the smallest
/// units (which defaults to [`Unit::Nanosecond`]). If this is violated,
/// then rounding a span with this configuration will result in an error.
///
/// If a largest unit bigger than days is selected without a relative
/// datetime reference point, then an error is returned when using this
/// configuration with [`Span::round`].
///
/// # Example: re-balancing
///
/// This shows how a span can be re-balanced without losing precision:
///
/// ```
/// use jiff::{SpanRound, ToSpan, Unit};
///
/// let span = 86_401_123_456_789i64.nanoseconds();
/// assert_eq!(
/// span.round(SpanRound::new().largest(Unit::Hour))?.fieldwise(),
/// 24.hours().seconds(1).milliseconds(123).microseconds(456).nanoseconds(789),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// If you need to use a largest unit bigger than hours, then you must
/// provide a relative datetime as a reference point (otherwise an error
/// will occur):
///
/// ```
/// use jiff::{civil::date, SpanRound, ToSpan, Unit};
///
/// let span = 3_968_000.seconds();
/// let round = SpanRound::new()
/// .largest(Unit::Day)
/// .relative(date(2024, 7, 1));
/// assert_eq!(
/// span.round(round)?,
/// 45.days().hours(22).minutes(13).seconds(20).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// As a special case for days, one can instead opt into invariant 24-hour
/// days (and 7-day weeks) without providing an explicit relative date:
///
/// ```
/// use jiff::{SpanRound, ToSpan, Unit};
///
/// let span = 86_401_123_456_789i64.nanoseconds();
/// assert_eq!(
/// span.round(
/// SpanRound::new().largest(Unit::Day).days_are_24_hours(),
/// )?.fieldwise(),
/// 1.day().seconds(1).milliseconds(123).microseconds(456).nanoseconds(789),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: re-balancing while taking DST into account
///
/// When given a zone aware relative datetime, rounding will even take
/// DST into account:
///
/// ```
/// use jiff::{SpanRound, ToSpan, Unit, Zoned};
///
/// let span = 2756.hours();
/// let zdt = "2020-01-01T00:00+01:00[Europe/Rome]".parse::<Zoned>()?;
/// let round = SpanRound::new().largest(Unit::Year).relative(&zdt);
/// assert_eq!(
/// span.round(round)?,
/// 3.months().days(23).hours(21).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Now compare with the same operation, but on a civil datetime (which is
/// not aware of time zone):
///
/// ```
/// use jiff::{civil::DateTime, SpanRound, ToSpan, Unit};
///
/// let span = 2756.hours();
/// let dt = "2020-01-01T00:00".parse::<DateTime>()?;
/// let round = SpanRound::new().largest(Unit::Year).relative(dt);
/// assert_eq!(
/// span.round(round)?,
/// 3.months().days(23).hours(20).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// The result is 1 hour shorter. This is because, in the zone
/// aware re-balancing, it accounts for the transition into DST at
/// `2020-03-29T01:00Z`, which skips an hour. This makes the span one hour
/// longer because one of the days in the span is actually only 23 hours
/// long instead of 24 hours.
#[inline]
pub fn largest(self, unit: Unit) -> SpanRound<'a> {
SpanRound { largest: Some(unit), ..self }
}
/// Set the rounding mode.
///
/// This defaults to [`RoundMode::HalfExpand`], which makes rounding work
/// like how you were taught in school.
///
/// # Example
///
/// A basic example that rounds to the nearest minute, but changing its
/// rounding mode to truncation:
///
/// ```
/// use jiff::{RoundMode, SpanRound, ToSpan, Unit};
///
/// let span = 15.minutes().seconds(46);
/// assert_eq!(
/// span.round(SpanRound::new()
/// .smallest(Unit::Minute)
/// .mode(RoundMode::Trunc),
/// )?,
/// // The default round mode does rounding like
/// // how you probably learned in school, and would
/// // result in rounding up to 16 minutes. But we
/// // change it to truncation here, which makes it
/// // round down.
/// 15.minutes().fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn mode(self, mode: RoundMode) -> SpanRound<'a> {
SpanRound { mode, ..self }
}
/// Set the rounding increment for the smallest unit.
///
/// The default value is `1`. Other values permit rounding the smallest
/// unit to the nearest integer increment specified. For example, if the
/// smallest unit is set to [`Unit::Minute`], then a rounding increment of
/// `30` would result in rounding in increments of a half hour. That is,
/// the only minute value that could result would be `0` or `30`.
///
/// # Errors
///
/// When the smallest unit is less than days, the rounding increment must
/// divide evenly into the next highest unit after the smallest unit
/// configured (and must not be equivalent to it). For example, if the
/// smallest unit is [`Unit::Nanosecond`], then *some* of the valid values
/// for the rounding increment are `1`, `2`, `4`, `5`, `100` and `500`.
/// Namely, any integer that divides evenly into `1,000` nanoseconds since
/// there are `1,000` nanoseconds in the next highest unit (microseconds).
///
/// The error will occur when computing the span, and not when setting
/// the increment here.
///
/// # Example
///
/// This shows how to round a span to the nearest 5 minute increment:
///
/// ```
/// use jiff::{ToSpan, Unit};
///
/// let span = 4.hours().minutes(2).seconds(30);
/// assert_eq!(
/// span.round((Unit::Minute, 5))?,
/// 4.hours().minutes(5).fieldwise(),
/// );
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn increment(self, increment: i64) -> SpanRound<'a> {
SpanRound { increment, ..self }
}
/// Set the relative datetime to use when rounding a span.
///
/// A relative datetime is only required when calendar units (units greater
/// than days) are involved. This includes having calendar units in the
/// original span, or calendar units in the configured smallest or largest
/// unit. A relative datetime is required when calendar units are used
/// because the duration of a particular calendar unit (like 1 month or 1
/// year) is variable and depends on the date. For example, 1 month from
/// 2024-01-01 is 31 days, but 1 month from 2024-02-01 is 29 days.
///
/// A relative datetime is provided by anything that implements
/// `Into<SpanRelativeTo>`. There are a few convenience trait
/// implementations provided:
///
/// * `From<&Zoned> for SpanRelativeTo` uses a zone aware datetime to do
/// rounding. In this case, rounding will take time zone transitions into
/// account. In particular, when using a zoned relative datetime, not all
/// days are necessarily 24 hours.
/// * `From<civil::DateTime> for SpanRelativeTo` uses a civil datetime. In
/// this case, all days will be considered 24 hours long.
/// * `From<civil::Date> for SpanRelativeTo` uses a civil date. In this
/// case, all days will be considered 24 hours long.
///
/// Note that one can impose 24-hour days without providing a reference
/// date via [`SpanRelativeTo::days_are_24_hours`].
///
/// # Errors
///
/// If rounding involves a calendar unit (units bigger than hours) and no
/// relative datetime is provided, then this configuration will lead to
/// an error when used with [`Span::round`].
///
/// # Example
///
/// This example shows very precisely how a DST transition can impact
/// rounding and re-balancing. For example, consider the day `2024-11-03`
/// in `America/New_York`. On this day, the 1 o'clock hour was repeated,
/// making the day 24 hours long. This will be taken into account when
/// rounding if a zoned datetime is provided as a reference point:
///
/// ```
/// use jiff::{SpanRound, ToSpan, Unit, Zoned};
///
/// let zdt = "2024-11-03T00-04[America/New_York]".parse::<Zoned>()?;
/// let round = SpanRound::new().largest(Unit::Hour).relative(&zdt);
/// assert_eq!(1.day().round(round)?, 25.hours().fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// And similarly for `2024-03-10`, where the 2 o'clock hour was skipped
/// entirely:
///
/// ```
/// use jiff::{SpanRound, ToSpan, Unit, Zoned};
///
/// let zdt = "2024-03-10T00-05[America/New_York]".parse::<Zoned>()?;
/// let round = SpanRound::new().largest(Unit::Hour).relative(&zdt);
/// assert_eq!(1.day().round(round)?, 23.hours().fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn relative<R: Into<SpanRelativeTo<'a>>>(
self,
relative: R,
) -> SpanRound<'a> {
SpanRound { relative: Some(relative.into()), ..self }
}
/// This is a convenience function for setting the relative option on
/// this configuration to [`SpanRelativeTo::days_are_24_hours`].
///
/// # Example
///
/// When rounding spans involving days, either a relative datetime must be
/// provided, or a special assertion opting into 24-hour days is
/// required. Otherwise, you get an error.
///
/// ```
/// use jiff::{SpanRound, ToSpan, Unit};
///
/// let span = 2.days().hours(12);
/// // No relative date provided, which results in an error.
/// assert_eq!(
/// span.round(Unit::Day).unwrap_err().to_string(),
/// "error with `smallest` rounding option: using unit 'day' in a \
/// span or configuration requires that either a relative reference \
/// time be given or `SpanRelativeTo::days_are_24_hours()` is used \
/// to indicate invariant 24-hour days, but neither were provided",
/// );
/// let rounded = span.round(
/// SpanRound::new().smallest(Unit::Day).days_are_24_hours(),
/// )?;
/// assert_eq!(rounded, 3.days().fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[inline]
pub fn days_are_24_hours(self) -> SpanRound<'a> {
self.relative(SpanRelativeTo::days_are_24_hours())
}
/// Returns the configured smallest unit on this round configuration.
#[inline]
pub(crate) fn get_smallest(&self) -> Unit {
self.smallest
}
/// Returns the configured largest unit on this round configuration.
#[inline]
pub(crate) fn get_largest(&self) -> Option<Unit> {
self.largest
}
/// Returns true only when rounding a span *may* change it. When it
/// returns false, and if the span is already balanced according to
/// the largest unit in this round configuration, then it is guaranteed
/// that rounding is a no-op.
///
/// This is useful to avoid rounding calls after doing span arithmetic
/// on datetime types. This works because the "largest" unit is used to
/// construct a balanced span for the difference between two datetimes.
/// So we already know the span has been balanced. If this weren't the
/// case, then the largest unit being different from the one in the span
/// could result in rounding making a change. (And indeed, in the general
/// case of span rounding below, we do a more involved check for this.)
#[inline]
pub(crate) fn rounding_may_change_span_ignore_largest(&self) -> bool {
self.smallest > Unit::Nanosecond || self.increment > 1
}
/// Does the actual span rounding.
fn round(&self, span: Span) -> Result<Span, Error> {
let existing_largest = span.largest_unit();
let mode = self.mode;
let smallest = self.smallest;
let largest =
self.largest.unwrap_or_else(|| smallest.max(existing_largest));
let max = existing_largest.max(largest);
let increment = increment::for_span(smallest, self.increment)?;
if largest < smallest {
return Err(err!(
"largest unit ('{largest}') cannot be smaller than \
smallest unit ('{smallest}')",
largest = largest.singular(),
smallest = smallest.singular(),
));
}
let relative = match self.relative {
Some(ref r) => {
match r.to_relative(max)? {
Some(r) => r,
None => {
// If our reference point is civil time, then its units
// are invariant as long as we are using day-or-lower
// everywhere. That is, the length of the duration is
// independent of the reference point. In which case,
// rounding is a simple matter of converting the span
// to a number of nanoseconds and then rounding that.
return Ok(round_span_invariant(
span, smallest, largest, increment, mode,
)?);
}
}
}
None => {
// This is only okay if none of our units are above 'day'.
// That is, a reference point is only necessary when there is
// no reasonable invariant interpretation of the span. And this
// is only true when everything is less than 'day'.
requires_relative_date_err(smallest)
.context("error with `smallest` rounding option")?;
if let Some(largest) = self.largest {
requires_relative_date_err(largest)
.context("error with `largest` rounding option")?;
}
requires_relative_date_err(existing_largest).context(
"error with largest unit in span to be rounded",
)?;
assert!(max <= Unit::Week);
return Ok(round_span_invariant(
span, smallest, largest, increment, mode,
)?);
}
};
relative.round(span, smallest, largest, increment, mode)
}
}
impl Default for SpanRound<'static> {
fn default() -> SpanRound<'static> {
SpanRound::new()
}
}
impl From<Unit> for SpanRound<'static> {
fn from(unit: Unit) -> SpanRound<'static> {
SpanRound::default().smallest(unit)
}
}
impl From<(Unit, i64)> for SpanRound<'static> {
fn from((unit, increment): (Unit, i64)) -> SpanRound<'static> {
SpanRound::default().smallest(unit).increment(increment)
}
}
/// A relative datetime for use with [`Span`] APIs.
///
/// A relative datetime can be one of the following: [`civil::Date`](Date),
/// [`civil::DateTime`](DateTime) or [`Zoned`]. It can be constructed from any
/// of the preceding types via `From` trait implementations.
///
/// A relative datetime is used to indicate how the calendar units of a `Span`
/// should be interpreted. For example, the span "1 month" does not have a
/// fixed meaning. One month from `2024-03-01` is 31 days, but one month from
/// `2024-04-01` is 30 days. Similar for years.
///
/// When a relative datetime in time zone aware (i.e., it is a `Zoned`), then
/// a `Span` will also consider its day units to be variable in length. For
/// example, `2024-03-10` in `America/New_York` was only 23 hours long, where
/// as `2024-11-03` in `America/New_York` was 25 hours long. When a relative
/// datetime is civil, then days are considered to always be of a fixed 24
/// hour length.
///
/// This type is principally used as an input to one of several different
/// [`Span`] APIs:
///
/// * [`Span::round`] rounds spans. A relative datetime is necessary when
/// dealing with calendar units. (But spans without calendar units can be
/// rounded without providing a relative datetime.)
/// * Span arithmetic via [`Span::checked_add`] and [`Span::checked_sub`].
/// A relative datetime is needed when adding or subtracting spans with
/// calendar units.
/// * Span comarisons via [`Span::compare`] require a relative datetime when
/// comparing spans with calendar units.
/// * Computing the "total" duration as a single floating point number via
/// [`Span::total`] also requires a relative datetime when dealing with
/// calendar units.
///
/// # Example
///
/// This example shows how to round a span with larger calendar units to
/// smaller units:
///
/// ```
/// use jiff::{SpanRound, ToSpan, Unit, Zoned};
///
/// let zdt: Zoned = "2012-01-01[Antarctica/Troll]".parse()?;
/// let round = SpanRound::new().largest(Unit::Day).relative(&zdt);
/// assert_eq!(1.year().round(round)?, 366.days().fieldwise());
///
/// // If you tried this without a relative datetime, it would fail:
/// let round = SpanRound::new().largest(Unit::Day);
/// assert!(1.year().round(round).is_err());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy, Debug)]
pub struct SpanRelativeTo<'a> {
kind: SpanRelativeToKind<'a>,
}
impl<'a> SpanRelativeTo<'a> {
/// Creates a special marker that indicates all days ought to be assumed
/// to be 24 hours without providing a relative reference time.
///
/// This is relevant to the following APIs:
///
/// * [`Span::checked_add`]
/// * [`Span::checked_sub`]
/// * [`Span::compare`]
/// * [`Span::total`]
/// * [`Span::round`]
/// * [`Span::to_duration`]
///
/// Specifically, in a previous version of Jiff, the above APIs permitted
/// _silently_ assuming that days are always 24 hours when a relative
/// reference date wasn't provided. In the current version of Jiff, this
/// silent interpretation no longer happens and instead an error will
/// occur.
///
/// If you need to use these APIs with spans that contain non-zero units
/// of days or weeks but without a relative reference date, then you may
/// use this routine to create a special marker for `SpanRelativeTo` that
/// permits the APIs above to assume days are always 24 hours.
///
/// # Motivation
///
/// The purpose of the marker is two-fold:
///
/// * Requiring the marker is important for improving the consistency of
/// `Span` APIs. Previously, some APIs (like [`Timestamp::checked_add`])
/// would always return an error if the `Span` given had non-zero
/// units of days or greater. On the other hand, other APIs (like
/// [`Span::checked_add`]) would autoamtically assume days were always
/// 24 hours if no relative reference time was given and either span had
/// non-zero units of days. With this marker, APIs _never_ assume days are
/// always 24 hours automatically.
/// * When it _is_ appropriate to assume all days are 24 hours
/// (for example, when only dealing with spans derived from
/// [`civil`](crate::civil) datetimes) and where providing a relative
/// reference datetime doesn't make sense. In this case, one _could_
/// provide a "dummy" reference date since the precise date in civil time
/// doesn't impact the length of a day. But a marker like the one returned
/// here is more explicit for the purpose of assuming days are always 24
/// hours.
///
/// With that said, ideally, callers should provide a relative reference
/// datetime if possible.
///
/// See [Issue #48] for more discussion on this topic.
///
/// # Example: different interpretations of "1 day"
///
/// This example shows how "1 day" can be interpreted differently via the
/// [`Span::total`] API:
///
/// ```
/// use jiff::{SpanRelativeTo, ToSpan, Unit, Zoned};
///
/// let span = 1.day();
///
/// // An error because days aren't always 24 hours:
/// assert_eq!(
/// span.total(Unit::Hour).unwrap_err().to_string(),
/// "using unit 'day' in a span or configuration requires that either \
/// a relative reference time be given or \
/// `SpanRelativeTo::days_are_24_hours()` is used to indicate \
/// invariant 24-hour days, but neither were provided",
/// );
/// // Opt into invariant 24 hour days without a relative date:
/// let marker = SpanRelativeTo::days_are_24_hours();
/// let hours = span.total((Unit::Hour, marker))?;
/// assert_eq!(hours, 24.0);
/// // Days can be shorter than 24 hours:
/// let zdt: Zoned = "2024-03-10[America/New_York]".parse()?;
/// let hours = span.total((Unit::Hour, &zdt))?;
/// assert_eq!(hours, 23.0);
/// // Days can be longer than 24 hours:
/// let zdt: Zoned = "2024-11-03[America/New_York]".parse()?;
/// let hours = span.total((Unit::Hour, &zdt))?;
/// assert_eq!(hours, 25.0);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Similar behavior applies to the other APIs listed above.
///
/// # Example: different interpretations of "1 week"
///
/// This example shows how "1 week" can be interpreted differently via the
/// [`Span::total`] API:
///
/// ```
/// use jiff::{SpanRelativeTo, ToSpan, Unit, Zoned};
///
/// let span = 1.week();
///
/// // An error because days aren't always 24 hours:
/// assert_eq!(
/// span.total(Unit::Hour).unwrap_err().to_string(),
/// "using unit 'week' in a span or configuration requires that either \
/// a relative reference time be given or \
/// `SpanRelativeTo::days_are_24_hours()` is used to indicate \
/// invariant 24-hour days, but neither were provided",
/// );
/// // Opt into invariant 24 hour days without a relative date:
/// let marker = SpanRelativeTo::days_are_24_hours();
/// let hours = span.total((Unit::Hour, marker))?;
/// assert_eq!(hours, 168.0);
/// // Weeks can be shorter than 24*7 hours:
/// let zdt: Zoned = "2024-03-10[America/New_York]".parse()?;
/// let hours = span.total((Unit::Hour, &zdt))?;
/// assert_eq!(hours, 167.0);
/// // Weeks can be longer than 24*7 hours:
/// let zdt: Zoned = "2024-11-03[America/New_York]".parse()?;
/// let hours = span.total((Unit::Hour, &zdt))?;
/// assert_eq!(hours, 169.0);
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: working with [`civil::Date`](crate::civil::Date)
///
/// A `Span` returned by computing the difference in time between two
/// [`civil::Date`](crate::civil::Date)s will have a non-zero number of
/// days. In older versions of Jiff, if one wanted to add spans returned by
/// these APIs, you could do so without futzing with relative dates. But
/// now you either need to provide a relative date:
///
/// ```
/// use jiff::{civil::date, ToSpan};
///
/// let d1 = date(2025, 1, 18);
/// let d2 = date(2025, 1, 26);
/// let d3 = date(2025, 2, 14);
///
/// let span1 = d2 - d1;
/// let span2 = d3 - d2;
/// let total = span1.checked_add((span2, d1))?;
/// assert_eq!(total, 27.days().fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Or you can provide a marker indicating that days are always 24 hours.
/// This is fine for this use case since one is only doing civil calendar
/// arithmetic and not working with time zones:
///
/// ```
/// use jiff::{civil::date, SpanRelativeTo, ToSpan};
///
/// let d1 = date(2025, 1, 18);
/// let d2 = date(2025, 1, 26);
/// let d3 = date(2025, 2, 14);
///
/// let span1 = d2 - d1;
/// let span2 = d3 - d2;
/// let total = span1.checked_add(
/// (span2, SpanRelativeTo::days_are_24_hours()),
/// )?;
/// assert_eq!(total, 27.days().fieldwise());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// [Issue #48]: https://github.com/BurntSushi/jiff/issues/48
#[inline]
pub const fn days_are_24_hours() -> SpanRelativeTo<'static> {
let kind = SpanRelativeToKind::DaysAre24Hours;
SpanRelativeTo { kind }
}
/// Converts this public API relative datetime into a more versatile
/// internal representation of the same concept.
///
/// Basically, the internal `Relative` type is `Cow` which means it isn't
/// `Copy`. But it can present a more uniform API. The public API type
/// doesn't have `Cow` so that it can be `Copy`.
///
/// We also take this opportunity to attach some convenient data, such
/// as a timestamp when the relative datetime type is civil.
///
/// This can return `None` if this `SpanRelativeTo` isn't actually a
/// datetime but a "marker" indicating some unit (like days) should be
/// treated as invariant. Or `None` is returned when the given unit is
/// always invariant (hours or smaller).
///
/// # Errors
///
/// If there was a problem doing this conversion, then an error is
/// returned. In practice, this only occurs for a civil datetime near the
/// civil datetime minimum and maximum values.
fn to_relative(&self, unit: Unit) -> Result<Option<Relative<'a>>, Error> {
if !unit.is_variable() {
return Ok(None);
}
match self.kind {
SpanRelativeToKind::Civil(dt) => {
Ok(Some(Relative::Civil(RelativeCivil::new(dt)?)))
}
SpanRelativeToKind::Zoned(zdt) => {
Ok(Some(Relative::Zoned(RelativeZoned {
zoned: DumbCow::Borrowed(zdt),
})))
}
SpanRelativeToKind::DaysAre24Hours => {
if matches!(unit, Unit::Year | Unit::Month) {
return Err(err!(
"using unit '{unit}' in span or configuration \
requires that a relative reference time be given \
(`SpanRelativeTo::days_are_24_hours()` was given \
but this only permits using days and weeks \
without a relative reference time)",
unit = unit.singular(),
));
}
Ok(None)
}
}
}
}
#[derive(Clone, Copy, Debug)]
enum SpanRelativeToKind<'a> {
Civil(DateTime),
Zoned(&'a Zoned),
DaysAre24Hours,
}
impl<'a> From<&'a Zoned> for SpanRelativeTo<'a> {
fn from(zdt: &'a Zoned) -> SpanRelativeTo<'a> {
SpanRelativeTo { kind: SpanRelativeToKind::Zoned(zdt) }
}
}
impl From<DateTime> for SpanRelativeTo<'static> {
fn from(dt: DateTime) -> SpanRelativeTo<'static> {
SpanRelativeTo { kind: SpanRelativeToKind::Civil(dt) }
}
}
impl From<Date> for SpanRelativeTo<'static> {
fn from(date: Date) -> SpanRelativeTo<'static> {
let dt = DateTime::from_parts(date, Time::midnight());
SpanRelativeTo { kind: SpanRelativeToKind::Civil(dt) }
}
}
impl<'a> core::fmt::Display for SpanRelativeToKind<'a> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
match *self {
SpanRelativeToKind::Civil(dt) => core::fmt::Display::fmt(&dt, f),
SpanRelativeToKind::Zoned(zdt) => core::fmt::Display::fmt(zdt, f),
SpanRelativeToKind::DaysAre24Hours => write!(f, "TODO"),
}
}
}
/// A bit set that keeps track of all non-zero units on a `Span`.
///
/// Because of alignment, adding this to a `Span` does not make it any bigger.
///
/// The benefit of this bit set is to make it extremely cheap to enable fast
/// paths in various places. For example, doing arithmetic on a `Date` with an
/// arbitrary `Span` is pretty involved. But if you know the `Span` only
/// consists of non-zero units of days (and zero for all other units), then you
/// can take a much cheaper path.
#[derive(Clone, Copy)]
pub(crate) struct UnitSet(u16);
impl UnitSet {
/// Return a bit set representing all units as zero.
#[inline]
fn empty() -> UnitSet {
UnitSet(0)
}
/// Set the given `unit` to `is_zero` status in this set.
///
/// When `is_zero` is false, the unit is added to this set. Otherwise,
/// the unit is removed from this set.
#[inline]
fn set(self, unit: Unit, is_zero: bool) -> UnitSet {
let bit = 1 << unit as usize;
if is_zero {
UnitSet(self.0 & !bit)
} else {
UnitSet(self.0 | bit)
}
}
/// Returns true if and only if no units are in this set.
#[inline]
pub(crate) fn is_empty(&self) -> bool {
self.0 == 0
}
/// Returns true if and only if this `Span` contains precisely one
/// non-zero unit corresponding to the unit given.
#[inline]
pub(crate) fn contains_only(self, unit: Unit) -> bool {
self.0 == (1 << unit as usize)
}
/// Returns this set, but with only calendar units.
#[inline]
pub(crate) fn only_calendar(self) -> UnitSet {
UnitSet(self.0 & 0b0000_0011_1100_0000)
}
/// Returns this set, but with only time units.
#[inline]
pub(crate) fn only_time(self) -> UnitSet {
UnitSet(self.0 & 0b0000_0000_0011_1111)
}
/// Returns the largest unit in this set, or `None` if none are present.
#[inline]
pub(crate) fn largest_unit(self) -> Option<Unit> {
let zeros = usize::try_from(self.0.leading_zeros()).ok()?;
15usize.checked_sub(zeros).and_then(Unit::from_usize)
}
}
// N.B. This `Debug` impl isn't typically used.
//
// This is because the `Debug` impl for `Span` just emits itself in the
// friendly duration format, which doesn't include internal representation
// details like this set. It is included in `Span::debug`, but this isn't
// part of the public crate API.
impl core::fmt::Debug for UnitSet {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(f, "{{")?;
let mut units = *self;
let mut i = 0;
while let Some(unit) = units.largest_unit() {
if i > 0 {
write!(f, ", ")?;
}
i += 1;
write!(f, "{}", unit.compact())?;
units = units.set(unit, false);
}
if i == 0 {
write!(f, "∅")?;
}
write!(f, "}}")
}
}
/// An internal abstraction for managing a relative datetime for use in some
/// `Span` APIs.
///
/// This is effectively the same as a `SpanRelativeTo`, but uses a `Cow<Zoned>`
/// instead of a `&Zoned`. This makes it non-`Copy`, but allows us to craft a
/// more uniform API. (i.e., `relative + span = relative` instead of `relative
/// + span = owned_relative` or whatever.) Note that the `Copy` impl on
/// `SpanRelativeTo` means it has to accept a `&Zoned`. It can't ever take a
/// `Zoned` since it is non-Copy.
///
/// NOTE: Separately from above, I think it's plausible that this type could be
/// designed a bit differently. Namely, something like this:
///
/// ```text
/// struct Relative<'a> {
/// tz: Option<&'a TimeZone>,
/// dt: DateTime,
/// ts: Timestamp,
/// }
/// ```
///
/// That is, we do zone aware stuff but without an actual `Zoned` type. But I
/// think in order to make that work, we would need to expose most of the
/// `Zoned` API as functions on its component types (DateTime, Timestamp and
/// TimeZone). I think we are likely to want to do that for public API reasons,
/// but I'd like to resist it since I think it will add a lot of complexity.
/// Or maybe we need a `Unzoned` type that is `DateTime` and `Timestamp`, but
/// requires passing the time zone in to each of its methods. That might work
/// quite well, even if it was just an internal type.
///
/// Anyway, I'm not 100% sure the above would work, but I think it would. It
/// would be nicer because everything would be `Copy` all the time. We'd never
/// need a `Cow<TimeZone>` for example, because we never need to change or
/// create a new time zone.
#[derive(Clone, Debug)]
enum Relative<'a> {
Civil(RelativeCivil),
Zoned(RelativeZoned<'a>),
}
impl<'a> Relative<'a> {
/// Adds the given span to this relative datetime.
///
/// This defers to either [`DateTime::checked_add`] or
/// [`Zoned::checked_add`], depending on the type of relative datetime.
///
/// The `Relative` datetime returned is guaranteed to have the same
/// internal datetie type as `self`.
///
/// # Errors
///
/// This returns an error in the same cases as the underlying checked
/// arithmetic APIs. In general, this occurs when adding the given `span`
/// would result in overflow.
fn checked_add(&self, span: Span) -> Result<Relative, Error> {
match *self {
Relative::Civil(dt) => Ok(Relative::Civil(dt.checked_add(span)?)),
Relative::Zoned(ref zdt) => {
Ok(Relative::Zoned(zdt.checked_add(span)?))
}
}
}
fn checked_add_duration(
&self,
duration: SignedDuration,
) -> Result<Relative, Error> {
match *self {
Relative::Civil(dt) => {
Ok(Relative::Civil(dt.checked_add_duration(duration)?))
}
Relative::Zoned(ref zdt) => {
Ok(Relative::Zoned(zdt.checked_add_duration(duration)?))
}
}
}
/// Returns the span of time from this relative datetime to the one given,
/// with units as large as `largest`.
///
/// # Errors
///
/// This returns an error in the same cases as when the underlying
/// [`DateTime::until`] or [`Zoned::until`] fail. Because this doesn't
/// set or expose any rounding configuration, this can generally only
/// occur when `largest` is `Unit::Nanosecond` and the span of time
/// between `self` and `other` is too big to represent as a 64-bit integer
/// nanosecond count.
///
/// # Panics
///
/// This panics if `self` and `other` are different internal datetime
/// types. For example, if `self` was a civil datetime and `other` were
/// a zoned datetime.
fn until(&self, largest: Unit, other: &Relative) -> Result<Span, Error> {
match (self, other) {
(&Relative::Civil(ref dt1), &Relative::Civil(ref dt2)) => {
dt1.until(largest, dt2)
}
(&Relative::Zoned(ref zdt1), &Relative::Zoned(ref zdt2)) => {
zdt1.until(largest, zdt2)
}
// This would be bad if `Relative` were a public API, but in
// practice, this case never occurs because we don't mixup our
// `Relative` datetime types.
_ => unreachable!(),
}
}
/// Converts this relative datetime to a nanosecond in UTC time.
///
/// # Errors
///
/// If there was a problem doing this conversion, then an error is
/// returned. In practice, this only occurs for a civil datetime near the
/// civil datetime minimum and maximum values.
fn to_nanosecond(&self) -> NoUnits128 {
match *self {
Relative::Civil(dt) => dt.timestamp.as_nanosecond_ranged().rinto(),
Relative::Zoned(ref zdt) => {
zdt.zoned.timestamp().as_nanosecond_ranged().rinto()
}
}
}
/// Create a balanced span of time relative to this datetime.
///
/// The relative span returned has the same internal datetime type
/// (civil or zoned) as this relative datetime.
///
/// # Errors
///
/// This returns an error when the span in this range cannot be
/// represented. In general, this only occurs when asking for largest units
/// of `Unit::Nanosecond` *and* when the span is too big to fit into a
/// 64-bit nanosecond count.
///
/// This can also return an error in other extreme cases, such as when
/// adding the given span to this relative datetime results in overflow,
/// or if this relative datetime is a civil datetime and it couldn't be
/// converted to a timestamp in UTC.
fn into_relative_span(
self,
largest: Unit,
span: Span,
) -> Result<RelativeSpan<'a>, Error> {
let kind = match self {
Relative::Civil(start) => {
let end = start.checked_add(span)?;
RelativeSpanKind::Civil { start, end }
}
Relative::Zoned(start) => {
let end = start.checked_add(span)?;
RelativeSpanKind::Zoned { start, end }
}
};
let relspan = kind.into_relative_span(largest)?;
if span.get_sign_ranged() != 0
&& relspan.span.get_sign_ranged() != 0
&& span.get_sign_ranged() != relspan.span.get_sign_ranged()
{
// I haven't quite figured out when this case is hit. I think it's
// actually impossible right? Balancing a duration should not flip
// the sign.
//
// ref: https://github.com/fullcalendar/temporal-polyfill/blob/9e001042864394247181d1a5d591c18057ce32d2/packages/temporal-polyfill/src/internal/durationMath.ts#L236-L238
unreachable!(
"balanced span should have same sign as original span"
)
}
Ok(relspan)
}
/// Rounds the given span using the given rounding configuration.
fn round(
self,
span: Span,
smallest: Unit,
largest: Unit,
increment: NoUnits128,
mode: RoundMode,
) -> Result<Span, Error> {
let relspan = self.into_relative_span(largest, span)?;
if relspan.span.get_sign_ranged() == 0 {
return Ok(relspan.span);
}
let nudge = match relspan.kind {
RelativeSpanKind::Civil { start, end } => {
if smallest > Unit::Day {
Nudge::relative_calendar(
relspan.span,
&Relative::Civil(start),
&Relative::Civil(end),
smallest,
increment,
mode,
)?
} else {
let relative_end = end.timestamp.as_nanosecond_ranged();
Nudge::relative_invariant(
relspan.span,
relative_end.rinto(),
smallest,
largest,
increment,
mode,
)?
}
}
RelativeSpanKind::Zoned { ref start, ref end } => {
if smallest >= Unit::Day {
Nudge::relative_calendar(
relspan.span,
// FIXME: Find a way to drop these clones.
&Relative::Zoned(start.clone()),
&Relative::Zoned(end.clone()),
smallest,
increment,
mode,
)?
} else if largest >= Unit::Day {
// This is a special case for zoned datetimes when rounding
// could bleed into variable units.
Nudge::relative_zoned_time(
relspan.span,
start,
smallest,
increment,
mode,
)?
} else {
// Otherwise, rounding is the same as civil datetime.
let relative_end =
end.zoned.timestamp().as_nanosecond_ranged();
Nudge::relative_invariant(
relspan.span,
relative_end.rinto(),
smallest,
largest,
increment,
mode,
)?
}
}
};
nudge.bubble(&relspan, smallest, largest)
}
}
/// A balanced span between a range of civil or zoned datetimes.
///
/// The span is always balanced up to a certain unit as given to
/// `RelativeSpanKind::into_relative_span`.
#[derive(Clone, Debug)]
struct RelativeSpan<'a> {
span: Span,
kind: RelativeSpanKind<'a>,
}
/// A civil or zoned datetime range of time.
#[derive(Clone, Debug)]
enum RelativeSpanKind<'a> {
Civil { start: RelativeCivil, end: RelativeCivil },
Zoned { start: RelativeZoned<'a>, end: RelativeZoned<'a> },
}
impl<'a> RelativeSpanKind<'a> {
/// Create a balanced `RelativeSpan` from this range of time.
///
/// # Errors
///
/// This returns an error when the span in this range cannot be
/// represented. In general, this only occurs when asking for largest units
/// of `Unit::Nanosecond` *and* when the span is too big to fit into a
/// 64-bit nanosecond count.
fn into_relative_span(
self,
largest: Unit,
) -> Result<RelativeSpan<'a>, Error> {
let span = match self {
RelativeSpanKind::Civil { ref start, ref end } => start
.datetime
.until((largest, end.datetime))
.with_context(|| {
err!(
"failed to get span between {start} and {end} \
with largest unit as {unit}",
start = start.datetime,
end = end.datetime,
unit = largest.plural(),
)
})?,
RelativeSpanKind::Zoned { ref start, ref end } => start
.zoned
.until((largest, &*end.zoned))
.with_context(|| {
err!(
"failed to get span between {start} and {end} \
with largest unit as {unit}",
start = start.zoned,
end = end.zoned,
unit = largest.plural(),
)
})?,
};
Ok(RelativeSpan { span, kind: self })
}
}
/// A wrapper around a civil datetime and a timestamp corresponding to that
/// civil datetime in UTC.
///
/// Haphazardly interpreting a civil datetime in UTC is an odd and *usually*
/// incorrect thing to do. But the way we use it here is basically just to give
/// it an "anchoring" point such that we can represent it using a single
/// integer for rounding purposes. It is only used in a context *relative* to
/// another civil datetime interpreted in UTC. In this fashion, the selection
/// of UTC specifically doesn't really matter. We could use any time zone.
/// (Although, it must be a time zone without any transitions, otherwise we
/// could wind up with time zone aware results in a context where that would
/// be unexpected since this is civil time.)
#[derive(Clone, Copy, Debug)]
struct RelativeCivil {
datetime: DateTime,
timestamp: Timestamp,
}
impl RelativeCivil {
/// Creates a new relative wrapper around the given civil datetime.
///
/// This wrapper bundles a timestamp for the given datetime by interpreting
/// it as being in UTC. This is an "odd" thing to do, but it's only used
/// in the context of determining the length of time between two civil
/// datetimes. So technically, any time zone without transitions could be
/// used.
///
/// # Errors
///
/// This returns an error if the datetime could not be converted to a
/// timestamp. This only occurs near the minimum and maximum civil datetime
/// values.
fn new(datetime: DateTime) -> Result<RelativeCivil, Error> {
let timestamp = datetime
.to_zoned(TimeZone::UTC)
.with_context(|| {
err!("failed to convert {datetime} to timestamp")
})?
.timestamp();
Ok(RelativeCivil { datetime, timestamp })
}
/// Returns the result of [`DateTime::checked_add`].
///
/// # Errors
///
/// Returns an error in the same cases as `DateTime::checked_add`. That is,
/// when adding the span to this zoned datetime would overflow.
///
/// This also returns an error if the resulting datetime could not be
/// converted to a timestamp in UTC. This only occurs near the minimum and
/// maximum datetime values.
fn checked_add(&self, span: Span) -> Result<RelativeCivil, Error> {
let datetime = self.datetime.checked_add(span).with_context(|| {
err!("failed to add {span} to {dt}", dt = self.datetime)
})?;
let timestamp = datetime
.to_zoned(TimeZone::UTC)
.with_context(|| {
err!("failed to convert {datetime} to timestamp")
})?
.timestamp();
Ok(RelativeCivil { datetime, timestamp })
}
/// Returns the result of [`DateTime::checked_add`] with an absolute
/// duration.
///
/// # Errors
///
/// Returns an error in the same cases as `DateTime::checked_add`. That is,
/// when adding the span to this zoned datetime would overflow.
///
/// This also returns an error if the resulting datetime could not be
/// converted to a timestamp in UTC. This only occurs near the minimum and
/// maximum datetime values.
fn checked_add_duration(
&self,
duration: SignedDuration,
) -> Result<RelativeCivil, Error> {
let datetime =
self.datetime.checked_add(duration).with_context(|| {
err!("failed to add {duration:?} to {dt}", dt = self.datetime)
})?;
let timestamp = datetime
.to_zoned(TimeZone::UTC)
.with_context(|| {
err!("failed to convert {datetime} to timestamp")
})?
.timestamp();
Ok(RelativeCivil { datetime, timestamp })
}
/// Returns the result of [`DateTime::until`].
///
/// # Errors
///
/// Returns an error in the same cases as `DateTime::until`. That is, when
/// the span for the given largest unit cannot be represented. This can
/// generally only happen when `largest` is `Unit::Nanosecond` and the span
/// cannot be represented as a 64-bit integer of nanoseconds.
fn until(
&self,
largest: Unit,
other: &RelativeCivil,
) -> Result<Span, Error> {
self.datetime.until((largest, other.datetime)).with_context(|| {
err!(
"failed to get span between {dt1} and {dt2} \
with largest unit as {unit}",
unit = largest.plural(),
dt1 = self.datetime,
dt2 = other.datetime,
)
})
}
}
/// A simple wrapper around a possibly borrowed `Zoned`.
#[derive(Clone, Debug)]
struct RelativeZoned<'a> {
zoned: DumbCow<'a, Zoned>,
}
impl<'a> RelativeZoned<'a> {
/// Returns the result of [`Zoned::checked_add`].
///
/// # Errors
///
/// Returns an error in the same cases as `Zoned::checked_add`. That is,
/// when adding the span to this zoned datetime would overflow.
fn checked_add(
&self,
span: Span,
) -> Result<RelativeZoned<'static>, Error> {
let zoned = self.zoned.checked_add(span).with_context(|| {
err!("failed to add {span} to {zoned}", zoned = self.zoned)
})?;
Ok(RelativeZoned { zoned: DumbCow::Owned(zoned) })
}
/// Returns the result of [`Zoned::checked_add`] with an absolute duration.
///
/// # Errors
///
/// Returns an error in the same cases as `Zoned::checked_add`. That is,
/// when adding the span to this zoned datetime would overflow.
fn checked_add_duration(
&self,
duration: SignedDuration,
) -> Result<RelativeZoned<'static>, Error> {
let zoned = self.zoned.checked_add(duration).with_context(|| {
err!("failed to add {duration:?} to {zoned}", zoned = self.zoned)
})?;
Ok(RelativeZoned { zoned: DumbCow::Owned(zoned) })
}
/// Returns the result of [`Zoned::until`].
///
/// # Errors
///
/// Returns an error in the same cases as `Zoned::until`. That is, when
/// the span for the given largest unit cannot be represented. This can
/// generally only happen when `largest` is `Unit::Nanosecond` and the span
/// cannot be represented as a 64-bit integer of nanoseconds.
fn until(
&self,
largest: Unit,
other: &RelativeZoned<'a>,
) -> Result<Span, Error> {
self.zoned.until((largest, &*other.zoned)).with_context(|| {
err!(
"failed to get span between {zdt1} and {zdt2} \
with largest unit as {unit}",
unit = largest.plural(),
zdt1 = self.zoned,
zdt2 = other.zoned,
)
})
}
}
// The code below is the "core" rounding logic for spans. It was greatly
// inspired by this gist[1] and the fullcalendar Temporal polyfill[2]. In
// particular, the algorithm implemented below is a major simplification from
// how Temporal used to work[3]. Parts of it are still in rough and unclear
// shape IMO.
//
// [1]: https://gist.github.com/arshaw/36d3152c21482bcb78ea2c69591b20e0
// [2]: https://github.com/fullcalendar/temporal-polyfill
// [3]: https://github.com/tc39/proposal-temporal/issues/2792
/// The result of a span rounding strategy. There are three:
///
/// * Rounding spans relative to civil datetimes using only invariant
/// units (days or less). This is achieved by converting the span to a simple
/// integer number of nanoseconds and then rounding that.
/// * Rounding spans relative to either a civil datetime or a zoned datetime
/// where rounding might involve changing non-uniform units. That is, when
/// the smallest unit is greater than days for civil datetimes and greater
/// than hours for zoned datetimes.
/// * Rounding spans relative to a zoned datetime whose smallest unit is
/// less than days.
///
/// Each of these might produce a bottom heavy span that needs to be
/// re-balanced. This type represents that result via one of three constructors
/// corresponding to each of the above strategies, and then provides a routine
/// for rebalancing via "bubbling."
#[derive(Debug)]
struct Nudge {
/// A possibly bottom heavy rounded span.
span: Span,
/// The nanosecond timestamp corresponding to `relative + span`, where
/// `span` is the (possibly bottom heavy) rounded span.
rounded_relative_end: NoUnits128,
/// Whether rounding may have created a bottom heavy span such that a
/// calendar unit might need to be incremented after re-balancing smaller
/// units.
grew_big_unit: bool,
}
impl Nudge {
/// Performs rounding on the given span limited to invariant units.
///
/// For civil datetimes, this means the smallest unit must be days or less,
/// but the largest unit can be bigger. For zoned datetimes, this means
/// that *both* the largest and smallest unit must be hours or less. This
/// is because zoned datetimes with rounding that can spill up to days
/// requires special handling.
///
/// It works by converting the span to a single integer number of
/// nanoseconds, rounding it and then converting back to a span.
fn relative_invariant(
balanced: Span,
relative_end: NoUnits128,
smallest: Unit,
largest: Unit,
increment: NoUnits128,
mode: RoundMode,
) -> Result<Nudge, Error> {
// Ensures this is only called when rounding invariant units.
assert!(smallest <= Unit::Week);
let sign = balanced.get_sign_ranged();
let balanced_nanos = balanced.to_invariant_nanoseconds();
let rounded_nanos = mode.round_by_unit_in_nanoseconds(
balanced_nanos,
smallest,
increment,
);
let span = Span::from_invariant_nanoseconds(largest, rounded_nanos)
.with_context(|| {
err!(
"failed to convert rounded nanoseconds {rounded_nanos} \
to span for largest unit as {unit}",
unit = largest.plural(),
)
})?
.years_ranged(balanced.get_years_ranged())
.months_ranged(balanced.get_months_ranged())
.weeks_ranged(balanced.get_weeks_ranged());
let diff_nanos = rounded_nanos - balanced_nanos;
let diff_days = rounded_nanos.div_ceil(t::NANOS_PER_CIVIL_DAY)
- balanced_nanos.div_ceil(t::NANOS_PER_CIVIL_DAY);
let grew_big_unit = diff_days.signum() == sign;
let rounded_relative_end = relative_end + diff_nanos;
Ok(Nudge { span, rounded_relative_end, grew_big_unit })
}
/// Performs rounding on the given span where the smallest unit configured
/// implies that rounding will cover calendar or "non-uniform" units. (That
/// is, units whose length can change based on the relative datetime.)
fn relative_calendar(
balanced: Span,
relative_start: &Relative<'_>,
relative_end: &Relative<'_>,
smallest: Unit,
increment: NoUnits128,
mode: RoundMode,
) -> Result<Nudge, Error> {
#[cfg(not(feature = "std"))]
use crate::util::libm::Float;
assert!(smallest >= Unit::Day);
let sign = balanced.get_sign_ranged();
let truncated = increment
* balanced.get_units_ranged(smallest).div_ceil(increment);
let span = balanced
.without_lower(smallest)
.try_units_ranged(smallest, truncated)
.with_context(|| {
err!(
"failed to set {unit} to {truncated} on span {balanced}",
unit = smallest.singular()
)
})?;
let (relative0, relative1) = clamp_relative_span(
relative_start,
span,
smallest,
NoUnits::try_rfrom("increment", increment)?
.try_checked_mul("signed increment", sign)?,
)?;
// FIXME: This is brutal. This is the only non-optional floating point
// used so far in Jiff. We do expose floating point for things like
// `Span::total`, but that's optional and not a core part of Jiff's
// functionality. This is in the core part of Jiff's span rounding...
let denom = (relative1 - relative0).get() as f64;
let numer = (relative_end.to_nanosecond() - relative0).get() as f64;
let exact = (truncated.get() as f64)
+ (numer / denom) * (sign.get() as f64) * (increment.get() as f64);
let rounded = mode.round_float(exact, increment);
let grew_big_unit =
((rounded.get() as f64) - exact).signum() == (sign.get() as f64);
let span =
span.try_units_ranged(smallest, rounded).with_context(|| {
err!(
"failed to set {unit} to {truncated} on span {span}",
unit = smallest.singular()
)
})?;
let rounded_relative_end =
if grew_big_unit { relative1 } else { relative0 };
Ok(Nudge { span, rounded_relative_end, grew_big_unit })
}
/// Performs rounding on the given span where the smallest unit is hours
/// or less *and* the relative datetime is time zone aware.
fn relative_zoned_time(
balanced: Span,
relative_start: &RelativeZoned<'_>,
smallest: Unit,
increment: NoUnits128,
mode: RoundMode,
) -> Result<Nudge, Error> {
let sign = balanced.get_sign_ranged();
let time_nanos =
balanced.only_lower(Unit::Day).to_invariant_nanoseconds();
let mut rounded_time_nanos =
mode.round_by_unit_in_nanoseconds(time_nanos, smallest, increment);
let (relative0, relative1) = clamp_relative_span(
// FIXME: Find a way to drop this clone.
&Relative::Zoned(relative_start.clone()),
balanced.without_lower(Unit::Day),
Unit::Day,
sign.rinto(),
)?;
let day_nanos = relative1 - relative0;
let beyond_day_nanos = rounded_time_nanos - day_nanos;
let mut day_delta = NoUnits::N::<0>();
let rounded_relative_end =
if beyond_day_nanos == 0 || beyond_day_nanos.signum() == sign {
day_delta += C(1);
rounded_time_nanos = mode.round_by_unit_in_nanoseconds(
beyond_day_nanos,
smallest,
increment,
);
relative1 + rounded_time_nanos
} else {
relative0 + rounded_time_nanos
};
let span =
Span::from_invariant_nanoseconds(Unit::Hour, rounded_time_nanos)
.with_context(|| {
err!(
"failed to convert rounded nanoseconds \
{rounded_time_nanos} to span for largest unit as {unit}",
unit = Unit::Hour.plural(),
)
})?
.years_ranged(balanced.get_years_ranged())
.months_ranged(balanced.get_months_ranged())
.weeks_ranged(balanced.get_weeks_ranged())
.days_ranged(balanced.get_days_ranged() + day_delta);
let grew_big_unit = day_delta != 0;
Ok(Nudge { span, rounded_relative_end, grew_big_unit })
}
/// This "bubbles" up the units in a potentially "bottom heavy" span to
/// larger units. For example, P1m50d relative to March 1 is bottom heavy.
/// This routine will bubble the days up to months to get P2m19d.
///
/// # Errors
///
/// This routine fails if any arithmetic on the individual units fails, or
/// when span arithmetic on the relative datetime given fails.
fn bubble(
&self,
relative: &RelativeSpan,
smallest: Unit,
largest: Unit,
) -> Result<Span, Error> {
if !self.grew_big_unit || smallest == Unit::Week {
return Ok(self.span);
}
let smallest = smallest.max(Unit::Day);
let mut balanced = self.span;
let sign = balanced.get_sign_ranged();
let mut unit = smallest;
while let Some(u) = unit.next() {
unit = u;
if unit > largest {
break;
}
// We only bubble smaller units up into weeks when the largest unit
// is explicitly set to weeks. Otherwise, we leave it as-is.
if unit == Unit::Week && largest != Unit::Week {
continue;
}
let span_start = balanced.without_lower(unit);
let new_units = span_start
.get_units_ranged(unit)
.try_checked_add("bubble-units", sign)
.with_context(|| {
err!(
"failed to add sign {sign} to {unit} value {value}",
unit = unit.plural(),
value = span_start.get_units_ranged(unit),
)
})?;
let span_end = span_start
.try_units_ranged(unit, new_units)
.with_context(|| {
err!(
"failed to set {unit} to value \
{new_units} on span {span_start}",
unit = unit.plural(),
)
})?;
let threshold = match relative.kind {
RelativeSpanKind::Civil { ref start, .. } => {
start.checked_add(span_end)?.timestamp
}
RelativeSpanKind::Zoned { ref start, .. } => {
start.checked_add(span_end)?.zoned.timestamp()
}
};
let beyond =
self.rounded_relative_end - threshold.as_nanosecond_ranged();
if beyond == 0 || beyond.signum() == sign {
balanced = span_end;
} else {
break;
}
}
Ok(balanced)
}
}
/// Rounds a span consisting of only invariant units.
///
/// This only applies when the max of the units in the span being rounded,
/// the largest configured unit and the smallest configured unit are all
/// invariant. That is, days or lower for spans without a relative datetime or
/// a relative civil datetime, and hours or lower for spans with a relative
/// zoned datetime.
///
/// All we do here is convert the span to an integer number of nanoseconds,
/// round that and then convert back. There aren't any tricky corner cases to
/// consider here.
fn round_span_invariant(
span: Span,
smallest: Unit,
largest: Unit,
increment: NoUnits128,
mode: RoundMode,
) -> Result<Span, Error> {
assert!(smallest <= Unit::Week);
assert!(largest <= Unit::Week);
let nanos = span.to_invariant_nanoseconds();
let rounded =
mode.round_by_unit_in_nanoseconds(nanos, smallest, increment);
Span::from_invariant_nanoseconds(largest, rounded).with_context(|| {
err!(
"failed to convert rounded nanoseconds {rounded} \
to span for largest unit as {unit}",
unit = largest.plural(),
)
})
}
/// Returns the nanosecond timestamps of `relative + span` and `relative +
/// {amount of unit} + span`.
///
/// This is useful for determining the actual length, in nanoseconds, of some
/// unit amount (usually a single unit). Usually, this is called with a span
/// whose units lower than `unit` are zeroed out and with an `amount` that
/// is `-1` or `1` or `0`. So for example, if `unit` were `Unit::Day`, then
/// you'd get back two nanosecond timestamps relative to the relative datetime
/// given that start exactly "one day" apart. (Which might be different than 24
/// hours, depending on the time zone.)
///
/// # Errors
///
/// This returns an error if adding the units overflows, or if doing the span
/// arithmetic on `relative` overflows.
fn clamp_relative_span(
relative: &Relative<'_>,
span: Span,
unit: Unit,
amount: NoUnits,
) -> Result<(NoUnits128, NoUnits128), Error> {
let amount = span
.get_units_ranged(unit)
.try_checked_add("clamp-units", amount)
.with_context(|| {
err!(
"failed to add {amount} to {unit} \
value {value} on span {span}",
unit = unit.plural(),
value = span.get_units_ranged(unit),
)
})?;
let span_amount =
span.try_units_ranged(unit, amount).with_context(|| {
err!(
"failed to set {unit} unit to {amount} on span {span}",
unit = unit.plural(),
)
})?;
let relative0 = relative.checked_add(span)?.to_nanosecond();
let relative1 = relative.checked_add(span_amount)?.to_nanosecond();
Ok((relative0, relative1))
}
/// A common parsing function that works in bytes.
///
/// Specifically, this parses either an ISO 8601 duration into a `Span` or
/// a "friendly" duration into a `Span`. It also tries to give decent error
/// messages.
///
/// This works because the friendly and ISO 8601 formats have non-overlapping
/// prefixes. Both can start with a `+` or `-`, but aside from that, an ISO
/// 8601 duration _always_ has to start with a `P` or `p`. We can utilize this
/// property to very quickly determine how to parse the input. We just need to
/// handle the possibly ambiguous case with a leading sign a little carefully
/// in order to ensure good error messages.
///
/// (We do the same thing for `SignedDuration`.)
#[inline(always)]
fn parse_iso_or_friendly(bytes: &[u8]) -> Result<Span, Error> {
if bytes.is_empty() {
return Err(err!(
"an empty string is not a valid `Span`, \
expected either a ISO 8601 or Jiff's 'friendly' \
format",
));
}
let mut first = bytes[0];
if first == b'+' || first == b'-' {
if bytes.len() == 1 {
return Err(err!(
"found nothing after sign `{sign}`, \
which is not a valid `Span`, \
expected either a ISO 8601 or Jiff's 'friendly' \
format",
sign = escape::Byte(first),
));
}
first = bytes[1];
}
if first == b'P' || first == b'p' {
temporal::DEFAULT_SPAN_PARSER.parse_span(bytes)
} else {
friendly::DEFAULT_SPAN_PARSER.parse_span(bytes)
}
}
fn requires_relative_date_err(unit: Unit) -> Result<(), Error> {
if unit.is_variable() {
return Err(if matches!(unit, Unit::Week | Unit::Day) {
err!(
"using unit '{unit}' in a span or configuration \
requires that either a relative reference time be given \
or `SpanRelativeTo::days_are_24_hours()` is used to \
indicate invariant 24-hour days, \
but neither were provided",
unit = unit.singular(),
)
} else {
err!(
"using unit '{unit}' in a span or configuration \
requires that a relative reference time be given, \
but none was provided",
unit = unit.singular(),
)
});
}
Ok(())
}
#[cfg(test)]
mod tests {
use std::io::Cursor;
use alloc::string::ToString;
use crate::{civil::date, RoundMode};
use super::*;
#[test]
fn test_total() {
if crate::tz::db().is_definitively_empty() {
return;
}
let span = 130.hours().minutes(20);
let total = span.total(Unit::Second).unwrap();
assert_eq!(total, 469200.0);
let span = 123456789.seconds();
let total = span
.total(SpanTotal::from(Unit::Day).days_are_24_hours())
.unwrap();
assert_eq!(total, 1428.8980208333332);
let span = 2756.hours();
let dt = date(2020, 1, 1).at(0, 0, 0, 0);
let zdt = dt.in_tz("Europe/Rome").unwrap();
let total = span.total((Unit::Month, &zdt)).unwrap();
assert_eq!(total, 3.7958333333333334);
let total = span.total((Unit::Month, dt)).unwrap();
assert_eq!(total, 3.7944444444444443);
}
#[test]
fn test_compare() {
if crate::tz::db().is_definitively_empty() {
return;
}
let span1 = 79.hours().minutes(10);
let span2 = 79.hours().seconds(630);
let span3 = 78.hours().minutes(50);
let mut array = [span1, span2, span3];
array.sort_by(|sp1, sp2| sp1.compare(sp2).unwrap());
assert_eq!(array, [span3, span1, span2].map(SpanFieldwise));
let day24 = SpanRelativeTo::days_are_24_hours();
let span1 = 79.hours().minutes(10);
let span2 = 3.days().hours(7).seconds(630);
let span3 = 3.days().hours(6).minutes(50);
let mut array = [span1, span2, span3];
array.sort_by(|sp1, sp2| sp1.compare((sp2, day24)).unwrap());
assert_eq!(array, [span3, span1, span2].map(SpanFieldwise));
let dt = date(2020, 11, 1).at(0, 0, 0, 0);
let zdt = dt.in_tz("America/Los_Angeles").unwrap();
array.sort_by(|sp1, sp2| sp1.compare((sp2, &zdt)).unwrap());
assert_eq!(array, [span1, span3, span2].map(SpanFieldwise));
}
#[test]
fn test_checked_add() {
let span1 = 1.hour();
let span2 = 30.minutes();
let sum = span1.checked_add(span2).unwrap();
span_eq!(sum, 1.hour().minutes(30));
let span1 = 1.hour().minutes(30);
let span2 = 2.hours().minutes(45);
let sum = span1.checked_add(span2).unwrap();
span_eq!(sum, 4.hours().minutes(15));
let span = 50
.years()
.months(50)
.days(50)
.hours(50)
.minutes(50)
.seconds(50)
.milliseconds(500)
.microseconds(500)
.nanoseconds(500);
let relative = date(1900, 1, 1).at(0, 0, 0, 0);
let sum = span.checked_add((span, relative)).unwrap();
let expected = 108
.years()
.months(7)
.days(12)
.hours(5)
.minutes(41)
.seconds(41)
.milliseconds(1)
.microseconds(1)
.nanoseconds(0);
span_eq!(sum, expected);
let span = 1.month().days(15);
let relative = date(2000, 2, 1).at(0, 0, 0, 0);
let sum = span.checked_add((span, relative)).unwrap();
span_eq!(sum, 3.months());
let relative = date(2000, 3, 1).at(0, 0, 0, 0);
let sum = span.checked_add((span, relative)).unwrap();
span_eq!(sum, 2.months().days(30));
}
#[test]
fn test_round_day_time() {
let span = 29.seconds();
let rounded = span.round(Unit::Minute).unwrap();
span_eq!(rounded, 0.minute());
let span = 30.seconds();
let rounded = span.round(Unit::Minute).unwrap();
span_eq!(rounded, 1.minute());
let span = 8.seconds();
let rounded = span
.round(
SpanRound::new()
.smallest(Unit::Nanosecond)
.largest(Unit::Microsecond),
)
.unwrap();
span_eq!(rounded, 8_000_000.microseconds());
let span = 130.minutes();
let rounded = span
.round(SpanRound::new().largest(Unit::Day).days_are_24_hours())
.unwrap();
span_eq!(rounded, 2.hours().minutes(10));
let span = 10.minutes().seconds(52);
let rounded = span.round(Unit::Minute).unwrap();
span_eq!(rounded, 11.minutes());
let span = 10.minutes().seconds(52);
let rounded = span
.round(
SpanRound::new().smallest(Unit::Minute).mode(RoundMode::Trunc),
)
.unwrap();
span_eq!(rounded, 10.minutes());
let span = 2.hours().minutes(34).seconds(18);
let rounded =
span.round(SpanRound::new().largest(Unit::Second)).unwrap();
span_eq!(rounded, 9258.seconds());
let span = 6.minutes();
let rounded = span
.round(
SpanRound::new()
.smallest(Unit::Minute)
.increment(5)
.mode(RoundMode::Ceil),
)
.unwrap();
span_eq!(rounded, 10.minutes());
}
#[test]
fn test_round_relative_zoned_calendar() {
if crate::tz::db().is_definitively_empty() {
return;
}
let span = 2756.hours();
let relative =
date(2020, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York").unwrap();
let options = SpanRound::new()
.largest(Unit::Year)
.smallest(Unit::Day)
.relative(&relative);
let rounded = span.round(options).unwrap();
span_eq!(rounded, 3.months().days(24));
let span = 24.hours().nanoseconds(5);
let relative = date(2000, 10, 29)
.at(0, 0, 0, 0)
.in_tz("America/Vancouver")
.unwrap();
let options = SpanRound::new()
.largest(Unit::Day)
.smallest(Unit::Minute)
.relative(&relative)
.mode(RoundMode::Expand)
.increment(30);
let rounded = span.round(options).unwrap();
// It seems like this is the correct answer, although it apparently
// differs from Temporal and the FullCalendar polyfill. I'm not sure
// what accounts for the difference in the implementation.
//
// See: https://github.com/tc39/proposal-temporal/pull/2758#discussion_r1597255245
span_eq!(rounded, 24.hours().minutes(30));
// Ref: https://github.com/tc39/proposal-temporal/issues/2816#issuecomment-2115608460
let span = -1.month().hours(24);
let relative: crate::Zoned = date(2024, 4, 11)
.at(2, 0, 0, 0)
.in_tz("America/New_York")
.unwrap();
let options =
SpanRound::new().smallest(Unit::Millisecond).relative(&relative);
let rounded = span.round(options).unwrap();
span_eq!(rounded, -1.month().days(1).hours(1));
let dt = relative.checked_add(span).unwrap();
let diff = relative.until((Unit::Month, &dt)).unwrap();
span_eq!(diff, -1.month().days(1).hours(1));
// Like the above, but don't use a datetime near a DST transition. In
// this case, a day is a normal 24 hours. (Unlike above, where the
// duration includes a 23 hour day, and so an additional hour has to be
// added to the span to account for that.)
let span = -1.month().hours(24);
let relative = date(2024, 6, 11)
.at(2, 0, 0, 0)
.in_tz("America/New_York")
.unwrap();
let options =
SpanRound::new().smallest(Unit::Millisecond).relative(&relative);
let rounded = span.round(options).unwrap();
span_eq!(rounded, -1.month().days(1));
}
#[test]
fn test_round_relative_zoned_time() {
if crate::tz::db().is_definitively_empty() {
return;
}
let span = 2756.hours();
let relative =
date(2020, 1, 1).at(0, 0, 0, 0).in_tz("America/New_York").unwrap();
let options = SpanRound::new().largest(Unit::Year).relative(&relative);
let rounded = span.round(options).unwrap();
span_eq!(rounded, 3.months().days(23).hours(21));
let span = 2756.hours();
let relative =
date(2020, 9, 1).at(0, 0, 0, 0).in_tz("America/New_York").unwrap();
let options = SpanRound::new().largest(Unit::Year).relative(&relative);
let rounded = span.round(options).unwrap();
span_eq!(rounded, 3.months().days(23).hours(19));
let span = 3.hours();
let relative =
date(2020, 3, 8).at(0, 0, 0, 0).in_tz("America/New_York").unwrap();
let options = SpanRound::new().largest(Unit::Year).relative(&relative);
let rounded = span.round(options).unwrap();
span_eq!(rounded, 3.hours());
}
#[test]
fn test_round_relative_day_time() {
let span = 2756.hours();
let options =
SpanRound::new().largest(Unit::Year).relative(date(2020, 1, 1));
let rounded = span.round(options).unwrap();
span_eq!(rounded, 3.months().days(23).hours(20));
let span = 2756.hours();
let options =
SpanRound::new().largest(Unit::Year).relative(date(2020, 9, 1));
let rounded = span.round(options).unwrap();
span_eq!(rounded, 3.months().days(23).hours(20));
let span = 190.days();
let options =
SpanRound::new().largest(Unit::Year).relative(date(2020, 1, 1));
let rounded = span.round(options).unwrap();
span_eq!(rounded, 6.months().days(8));
let span = 30
.days()
.hours(23)
.minutes(59)
.seconds(59)
.milliseconds(999)
.microseconds(999)
.nanoseconds(999);
let options = SpanRound::new()
.smallest(Unit::Microsecond)
.largest(Unit::Year)
.relative(date(2024, 5, 1));
let rounded = span.round(options).unwrap();
span_eq!(rounded, 1.month());
let span = 364
.days()
.hours(23)
.minutes(59)
.seconds(59)
.milliseconds(999)
.microseconds(999)
.nanoseconds(999);
let options = SpanRound::new()
.smallest(Unit::Microsecond)
.largest(Unit::Year)
.relative(date(2023, 1, 1));
let rounded = span.round(options).unwrap();
span_eq!(rounded, 1.year());
let span = 365
.days()
.hours(23)
.minutes(59)
.seconds(59)
.milliseconds(999)
.microseconds(999)
.nanoseconds(999);
let options = SpanRound::new()
.smallest(Unit::Microsecond)
.largest(Unit::Year)
.relative(date(2023, 1, 1));
let rounded = span.round(options).unwrap();
span_eq!(rounded, 1.year().days(1));
let span = 365
.days()
.hours(23)
.minutes(59)
.seconds(59)
.milliseconds(999)
.microseconds(999)
.nanoseconds(999);
let options = SpanRound::new()
.smallest(Unit::Microsecond)
.largest(Unit::Year)
.relative(date(2024, 1, 1));
let rounded = span.round(options).unwrap();
span_eq!(rounded, 1.year());
let span = 3.hours();
let options =
SpanRound::new().largest(Unit::Year).relative(date(2020, 3, 8));
let rounded = span.round(options).unwrap();
span_eq!(rounded, 3.hours());
}
#[test]
fn span_sign() {
assert_eq!(Span::new().get_sign_ranged(), 0);
assert_eq!(Span::new().days(1).get_sign_ranged(), 1);
assert_eq!(Span::new().days(-1).get_sign_ranged(), -1);
assert_eq!(Span::new().days(1).days(0).get_sign_ranged(), 0);
assert_eq!(Span::new().days(-1).days(0).get_sign_ranged(), 0);
assert_eq!(Span::new().years(1).days(1).days(0).get_sign_ranged(), 1);
assert_eq!(
Span::new().years(-1).days(-1).days(0).get_sign_ranged(),
-1
);
}
#[test]
fn span_size() {
#[cfg(target_pointer_width = "64")]
{
#[cfg(debug_assertions)]
{
assert_eq!(core::mem::align_of::<Span>(), 8);
assert_eq!(core::mem::size_of::<Span>(), 184);
}
#[cfg(not(debug_assertions))]
{
assert_eq!(core::mem::align_of::<Span>(), 8);
assert_eq!(core::mem::size_of::<Span>(), 64);
}
}
}
quickcheck::quickcheck! {
fn prop_roundtrip_span_nanoseconds(span: Span) -> quickcheck::TestResult {
let largest = span.largest_unit();
if largest > Unit::Day {
return quickcheck::TestResult::discard();
}
let nanos = span.to_invariant_nanoseconds();
let got = Span::from_invariant_nanoseconds(largest, nanos).unwrap();
quickcheck::TestResult::from_bool(nanos == got.to_invariant_nanoseconds())
}
}
/// # `serde` deserializer compatibility test
///
/// Serde YAML used to be unable to deserialize `jiff` types,
/// as deserializing from bytes is not supported by the deserializer.
///
/// - <https://github.com/BurntSushi/jiff/issues/138>
/// - <https://github.com/BurntSushi/jiff/discussions/148>
#[test]
fn span_deserialize_yaml() {
let expected = Span::new()
.years(1)
.months(2)
.weeks(3)
.days(4)
.hours(5)
.minutes(6)
.seconds(7);
let deserialized: Span =
serde_yaml::from_str("P1y2m3w4dT5h6m7s").unwrap();
span_eq!(deserialized, expected);
let deserialized: Span =
serde_yaml::from_slice("P1y2m3w4dT5h6m7s".as_bytes()).unwrap();
span_eq!(deserialized, expected);
let cursor = Cursor::new(b"P1y2m3w4dT5h6m7s");
let deserialized: Span = serde_yaml::from_reader(cursor).unwrap();
span_eq!(deserialized, expected);
}
#[test]
fn display() {
let span = Span::new()
.years(1)
.months(2)
.weeks(3)
.days(4)
.hours(5)
.minutes(6)
.seconds(7)
.milliseconds(8)
.microseconds(9)
.nanoseconds(10);
insta::assert_snapshot!(
span,
@"P1Y2M3W4DT5H6M7.00800901S",
);
insta::assert_snapshot!(
alloc::format!("{span:#}"),
@"1y 2mo 3w 4d 5h 6m 7s 8ms 9µs 10ns",
);
}
/// This test ensures that we can parse `humantime` formatted durations.
#[test]
fn humantime_compatibility_parse() {
let dur = std::time::Duration::new(60 * 60 * 24 * 411, 123_456_789);
let formatted = humantime::format_duration(dur).to_string();
assert_eq!(
formatted,
"1year 1month 15days 7h 26m 24s 123ms 456us 789ns"
);
let expected = 1
.year()
.months(1)
.days(15)
.hours(7)
.minutes(26)
.seconds(24)
.milliseconds(123)
.microseconds(456)
.nanoseconds(789);
span_eq!(formatted.parse::<Span>().unwrap(), expected);
}
/// This test ensures that we can print a `Span` that `humantime` can
/// parse.
///
/// Note that this isn't the default since `humantime`'s parser is
/// pretty limited. e.g., It doesn't support things like `nsecs`
/// despite supporting `secs`. And other reasons. See the docs on
/// `Designator::HumanTime` for why we sadly provide a custom variant for
/// it.
#[test]
fn humantime_compatibility_print() {
static PRINTER: friendly::SpanPrinter = friendly::SpanPrinter::new()
.designator(friendly::Designator::HumanTime);
let span = 1
.year()
.months(1)
.days(15)
.hours(7)
.minutes(26)
.seconds(24)
.milliseconds(123)
.microseconds(456)
.nanoseconds(789);
let formatted = PRINTER.span_to_string(&span);
assert_eq!(formatted, "1y 1month 15d 7h 26m 24s 123ms 456us 789ns");
let dur = humantime::parse_duration(&formatted).unwrap();
let expected =
std::time::Duration::new(60 * 60 * 24 * 411, 123_456_789);
assert_eq!(dur, expected);
}
#[test]
fn from_str() {
let p = |s: &str| -> Result<Span, Error> { s.parse() };
insta::assert_snapshot!(
p("1 day").unwrap(),
@"P1D",
);
insta::assert_snapshot!(
p("+1 day").unwrap(),
@"P1D",
);
insta::assert_snapshot!(
p("-1 day").unwrap(),
@"-P1D",
);
insta::assert_snapshot!(
p("P1d").unwrap(),
@"P1D",
);
insta::assert_snapshot!(
p("+P1d").unwrap(),
@"P1D",
);
insta::assert_snapshot!(
p("-P1d").unwrap(),
@"-P1D",
);
insta::assert_snapshot!(
p("").unwrap_err(),
@"an empty string is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format",
);
insta::assert_snapshot!(
p("+").unwrap_err(),
@"found nothing after sign `+`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format",
);
insta::assert_snapshot!(
p("-").unwrap_err(),
@"found nothing after sign `-`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format",
);
}
#[test]
fn serde_deserialize() {
let p = |s: &str| -> Result<Span, serde_json::Error> {
serde_json::from_str(&alloc::format!("\"{s}\""))
};
insta::assert_snapshot!(
p("1 day").unwrap(),
@"P1D",
);
insta::assert_snapshot!(
p("+1 day").unwrap(),
@"P1D",
);
insta::assert_snapshot!(
p("-1 day").unwrap(),
@"-P1D",
);
insta::assert_snapshot!(
p("P1d").unwrap(),
@"P1D",
);
insta::assert_snapshot!(
p("+P1d").unwrap(),
@"P1D",
);
insta::assert_snapshot!(
p("-P1d").unwrap(),
@"-P1D",
);
insta::assert_snapshot!(
p("").unwrap_err(),
@"an empty string is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 2",
);
insta::assert_snapshot!(
p("+").unwrap_err(),
@"found nothing after sign `+`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 3",
);
insta::assert_snapshot!(
p("-").unwrap_err(),
@"found nothing after sign `-`, which is not a valid `Span`, expected either a ISO 8601 or Jiff's 'friendly' format at line 1 column 3",
);
}
}