jiff/tz/
offset.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
use core::{
    ops::{Add, AddAssign, Neg, Sub, SubAssign},
    time::Duration as UnsignedDuration,
};

use crate::{
    civil,
    duration::{Duration, SDuration},
    error::{err, Error, ErrorContext},
    span::Span,
    timestamp::Timestamp,
    tz::{AmbiguousOffset, AmbiguousTimestamp, AmbiguousZoned, TimeZone},
    util::{
        array_str::ArrayStr,
        common,
        rangeint::{RFrom, RInto, TryRFrom},
        t,
    },
    RoundMode, SignedDuration, SignedDurationRound, Unit,
};

/// An enum indicating whether a particular datetime  is in DST or not.
///
/// DST stands for "daylight saving time." It is a label used to apply to
/// points in time as a way to contrast it with "standard time." DST is
/// usually, but not always, one hour ahead of standard time. When DST takes
/// effect is usually determined by governments, and the rules can vary
/// depending on the location. DST is typically used as a means to maximize
/// "sunlight" time during typical working hours, and as a cost cutting measure
/// by reducing energy consumption. (The effectiveness of DST and whether it
/// is overall worth it is a separate question entirely.)
///
/// In general, most users should never need to deal with this type. But it can
/// be occasionally useful in circumstances where callers need to know whether
/// DST is active or not for a particular point in time.
///
/// This type has a `From<bool>` trait implementation, where the bool is
/// interpreted as being `true` when DST is active.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
pub enum Dst {
    /// DST is not in effect. In other words, standard time is in effect.
    No,
    /// DST is in effect.
    Yes,
}

impl Dst {
    /// Returns true when this value is equal to `Dst::Yes`.
    pub fn is_dst(self) -> bool {
        matches!(self, Dst::Yes)
    }

    /// Returns true when this value is equal to `Dst::No`.
    ///
    /// `std` in this context refers to "standard time." That is, it is the
    /// offset from UTC used when DST is not in effect.
    pub fn is_std(self) -> bool {
        matches!(self, Dst::No)
    }
}

impl From<bool> for Dst {
    fn from(is_dst: bool) -> Dst {
        if is_dst {
            Dst::Yes
        } else {
            Dst::No
        }
    }
}

/// Represents a fixed time zone offset.
///
/// Negative offsets correspond to time zones west of the prime meridian, while
/// positive offsets correspond to time zones east of the prime meridian.
/// Equivalently, in all cases, `civil-time - offset = UTC`.
///
/// # Display format
///
/// This type implements the `std::fmt::Display` trait. It
/// will convert the offset to a string format in the form
/// `{sign}{hours}[:{minutes}[:{seconds}]]`, where `minutes` and `seconds` are
/// only present when non-zero. For example:
///
/// ```
/// use jiff::tz;
///
/// let o = tz::offset(-5);
/// assert_eq!(o.to_string(), "-05");
/// let o = tz::Offset::from_seconds(-18_000).unwrap();
/// assert_eq!(o.to_string(), "-05");
/// let o = tz::Offset::from_seconds(-18_060).unwrap();
/// assert_eq!(o.to_string(), "-05:01");
/// let o = tz::Offset::from_seconds(-18_062).unwrap();
/// assert_eq!(o.to_string(), "-05:01:02");
///
/// // The min value.
/// let o = tz::Offset::from_seconds(-93_599).unwrap();
/// assert_eq!(o.to_string(), "-25:59:59");
/// // The max value.
/// let o = tz::Offset::from_seconds(93_599).unwrap();
/// assert_eq!(o.to_string(), "+25:59:59");
/// // No offset.
/// let o = tz::offset(0);
/// assert_eq!(o.to_string(), "+00");
/// ```
///
/// # Example
///
/// This shows how to create a zoned datetime with a time zone using a fixed
/// offset:
///
/// ```
/// use jiff::{civil::date, tz, Zoned};
///
/// let offset = tz::offset(-4).to_time_zone();
/// let zdt = date(2024, 7, 8).at(15, 20, 0, 0).to_zoned(offset)?;
/// assert_eq!(zdt.to_string(), "2024-07-08T15:20:00-04:00[-04:00]");
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// Notice that the zoned datetime still includes a time zone annotation. But
/// since there is no time zone identifier, the offset instead is repeated as
/// an additional assertion that a fixed offset datetime was intended.
#[derive(Clone, Copy, Eq, Hash, PartialEq, PartialOrd, Ord)]
pub struct Offset {
    span: t::SpanZoneOffset,
}

impl Offset {
    /// The minimum possible time zone offset.
    ///
    /// This corresponds to the offset `-25:59:59`.
    pub const MIN: Offset = Offset { span: t::SpanZoneOffset::MIN_SELF };

    /// The maximum possible time zone offset.
    ///
    /// This corresponds to the offset `25:59:59`.
    pub const MAX: Offset = Offset { span: t::SpanZoneOffset::MAX_SELF };

    /// The offset corresponding to UTC. That is, no offset at all.
    ///
    /// This is defined to always be equivalent to `Offset::ZERO`, but it is
    /// semantically distinct. This ought to be used when UTC is desired
    /// specifically, while `Offset::ZERO` ought to be used when one wants to
    /// express "no offset." For example, when adding offsets, `Offset::ZERO`
    /// corresponds to the identity.
    pub const UTC: Offset = Offset::ZERO;

    /// The offset corresponding to no offset at all.
    ///
    /// This is defined to always be equivalent to `Offset::UTC`, but it is
    /// semantically distinct. This ought to be used when a zero offset is
    /// desired specifically, while `Offset::UTC` ought to be used when one
    /// wants to express UTC. For example, when adding offsets, `Offset::ZERO`
    /// corresponds to the identity.
    pub const ZERO: Offset = Offset::constant(0);

    /// Creates a new time zone offset in a `const` context from a given number
    /// of hours.
    ///
    /// Negative offsets correspond to time zones west of the prime meridian,
    /// while positive offsets correspond to time zones east of the prime
    /// meridian. Equivalently, in all cases, `civil-time - offset = UTC`.
    ///
    /// The fallible non-const version of this constructor is
    /// [`Offset::from_hours`].
    ///
    /// # Panics
    ///
    /// This routine panics when the given number of hours is out of range.
    /// Namely, `hours` must be in the range `-25..=25`.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::tz::Offset;
    ///
    /// let o = Offset::constant(-5);
    /// assert_eq!(o.seconds(), -18_000);
    /// let o = Offset::constant(5);
    /// assert_eq!(o.seconds(), 18_000);
    /// ```
    ///
    /// Alternatively, one can use the terser `jiff::tz::offset` free function:
    ///
    /// ```
    /// use jiff::tz;
    ///
    /// let o = tz::offset(-5);
    /// assert_eq!(o.seconds(), -18_000);
    /// let o = tz::offset(5);
    /// assert_eq!(o.seconds(), 18_000);
    /// ```
    #[inline]
    pub const fn constant(hours: i8) -> Offset {
        if !t::SpanZoneOffsetHours::contains(hours) {
            panic!("invalid time zone offset hours")
        }
        Offset::constant_seconds((hours as i32) * 60 * 60)
    }

    /// Creates a new time zone offset in a `const` context from a given number
    /// of seconds.
    ///
    /// Negative offsets correspond to time zones west of the prime meridian,
    /// while positive offsets correspond to time zones east of the prime
    /// meridian. Equivalently, in all cases, `civil-time - offset = UTC`.
    ///
    /// The fallible non-const version of this constructor is
    /// [`Offset::from_seconds`].
    ///
    /// # Panics
    ///
    /// This routine panics when the given number of seconds is out of range.
    /// The range corresponds to the offsets `-25:59:59..=25:59:59`. In units
    /// of seconds, that corresponds to `-93,599..=93,599`.
    ///
    /// # Example
    ///
    /// ```ignore
    /// use jiff::tz::Offset;
    ///
    /// let o = Offset::constant_seconds(-18_000);
    /// assert_eq!(o.seconds(), -18_000);
    /// let o = Offset::constant_seconds(18_000);
    /// assert_eq!(o.seconds(), 18_000);
    /// ```
    // This is currently unexported because I find the name too long and
    // very off-putting. I don't think non-hour offsets are used enough to
    // warrant its existence. And I think I'd rather `Offset::hms` be const and
    // exported instead of this monstrosity.
    #[inline]
    const fn constant_seconds(seconds: i32) -> Offset {
        if !t::SpanZoneOffset::contains(seconds) {
            panic!("invalid time zone offset seconds")
        }
        Offset { span: t::SpanZoneOffset::new_unchecked(seconds) }
    }

    /// Creates a new time zone offset from a given number of hours.
    ///
    /// Negative offsets correspond to time zones west of the prime meridian,
    /// while positive offsets correspond to time zones east of the prime
    /// meridian. Equivalently, in all cases, `civil-time - offset = UTC`.
    ///
    /// # Errors
    ///
    /// This routine returns an error when the given number of hours is out of
    /// range. Namely, `hours` must be in the range `-25..=25`.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::tz::Offset;
    ///
    /// let o = Offset::from_hours(-5)?;
    /// assert_eq!(o.seconds(), -18_000);
    /// let o = Offset::from_hours(5)?;
    /// assert_eq!(o.seconds(), 18_000);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn from_hours(hours: i8) -> Result<Offset, Error> {
        let hours = t::SpanZoneOffsetHours::try_new("offset-hours", hours)?;
        Ok(Offset::from_hours_ranged(hours))
    }

    /// Creates a new time zone offset in a `const` context from a given number
    /// of seconds.
    ///
    /// Negative offsets correspond to time zones west of the prime meridian,
    /// while positive offsets correspond to time zones east of the prime
    /// meridian. Equivalently, in all cases, `civil-time - offset = UTC`.
    ///
    /// # Errors
    ///
    /// This routine returns an error when the given number of seconds is out
    /// of range. The range corresponds to the offsets `-25:59:59..=25:59:59`.
    /// In units of seconds, that corresponds to `-93,599..=93,599`.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::tz::Offset;
    ///
    /// let o = Offset::from_seconds(-18_000)?;
    /// assert_eq!(o.seconds(), -18_000);
    /// let o = Offset::from_seconds(18_000)?;
    /// assert_eq!(o.seconds(), 18_000);
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn from_seconds(seconds: i32) -> Result<Offset, Error> {
        let seconds = t::SpanZoneOffset::try_new("offset-seconds", seconds)?;
        Ok(Offset::from_seconds_ranged(seconds))
    }

    /// Returns the total number of seconds in this offset.
    ///
    /// The value returned is guaranteed to represent an offset in the range
    /// `-25:59:59..=25:59:59`. Or more precisely, the value will be in units
    /// of seconds in the range `-93,599..=93,599`.
    ///
    /// Negative offsets correspond to time zones west of the prime meridian,
    /// while positive offsets correspond to time zones east of the prime
    /// meridian. Equivalently, in all cases, `civil-time - offset = UTC`.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::tz;
    ///
    /// let o = tz::offset(-5);
    /// assert_eq!(o.seconds(), -18_000);
    /// let o = tz::offset(5);
    /// assert_eq!(o.seconds(), 18_000);
    /// ```
    #[inline]
    pub fn seconds(self) -> i32 {
        self.seconds_ranged().get()
    }

    /// Returns the negation of this offset.
    ///
    /// A negative offset will become positive and vice versa. This is a no-op
    /// if the offset is zero.
    ///
    /// This never panics.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::tz;
    ///
    /// assert_eq!(tz::offset(-5).negate(), tz::offset(5));
    /// // It's also available via the `-` operator:
    /// assert_eq!(-tz::offset(-5), tz::offset(5));
    /// ```
    pub fn negate(self) -> Offset {
        Offset { span: -self.span }
    }

    /// Returns the "sign number" or "signum" of this offset.
    ///
    /// The number returned is `-1` when this offset is negative,
    /// `0` when this offset is zero and `1` when this span is positive.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::tz;
    ///
    /// assert_eq!(tz::offset(5).signum(), 1);
    /// assert_eq!(tz::offset(0).signum(), 0);
    /// assert_eq!(tz::offset(-5).signum(), -1);
    /// ```
    #[inline]
    pub fn signum(self) -> i8 {
        t::Sign::rfrom(self.span.signum()).get()
    }

    /// Returns true if and only if this offset is positive.
    ///
    /// This returns false when the offset is zero or negative.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::tz;
    ///
    /// assert!(tz::offset(5).is_positive());
    /// assert!(!tz::offset(0).is_positive());
    /// assert!(!tz::offset(-5).is_positive());
    /// ```
    pub fn is_positive(self) -> bool {
        self.seconds_ranged() > 0
    }

    /// Returns true if and only if this offset is less than zero.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::tz;
    ///
    /// assert!(!tz::offset(5).is_negative());
    /// assert!(!tz::offset(0).is_negative());
    /// assert!(tz::offset(-5).is_negative());
    /// ```
    pub fn is_negative(self) -> bool {
        self.seconds_ranged() < 0
    }

    /// Returns true if and only if this offset is zero.
    ///
    /// Or equivalently, when this offset corresponds to [`Offset::UTC`].
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::tz;
    ///
    /// assert!(!tz::offset(5).is_zero());
    /// assert!(tz::offset(0).is_zero());
    /// assert!(!tz::offset(-5).is_zero());
    /// ```
    pub fn is_zero(self) -> bool {
        self.seconds_ranged() == 0
    }

    /// Converts this offset into a [`TimeZone`].
    ///
    /// This is a convenience function for calling [`TimeZone::fixed`] with
    /// this offset.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::tz::offset;
    ///
    /// let tz = offset(-4).to_time_zone();
    /// assert_eq!(
    ///     tz.to_datetime(jiff::Timestamp::UNIX_EPOCH).to_string(),
    ///     "1969-12-31T20:00:00",
    /// );
    /// ```
    pub fn to_time_zone(self) -> TimeZone {
        TimeZone::fixed(self)
    }

    /// Converts the given timestamp to a civil datetime using this offset.
    ///
    /// # Example
    ///
    /// ```
    /// use jiff::{civil::date, tz, Timestamp};
    ///
    /// assert_eq!(
    ///     tz::offset(-8).to_datetime(Timestamp::UNIX_EPOCH),
    ///     date(1969, 12, 31).at(16, 0, 0, 0),
    /// );
    /// ```
    #[inline]
    pub fn to_datetime(self, timestamp: Timestamp) -> civil::DateTime {
        timestamp_to_datetime_zulu(timestamp, self)
    }

    /// Converts the given civil datetime to a timestamp using this offset.
    ///
    /// # Errors
    ///
    /// This returns an error if this would have returned a timestamp outside
    /// of its minimum and maximum values.
    ///
    /// # Example
    ///
    /// This example shows how to find the timestamp corresponding to
    /// `1969-12-31T16:00:00-08`.
    ///
    /// ```
    /// use jiff::{civil::date, tz, Timestamp};
    ///
    /// assert_eq!(
    ///     tz::offset(-8).to_timestamp(date(1969, 12, 31).at(16, 0, 0, 0))?,
    ///     Timestamp::UNIX_EPOCH,
    /// );
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// This example shows some maximum boundary conditions where this routine
    /// will fail:
    ///
    /// ```
    /// use jiff::{civil::date, tz, Timestamp, ToSpan};
    ///
    /// let dt = date(9999, 12, 31).at(23, 0, 0, 0);
    /// assert!(tz::offset(-8).to_timestamp(dt).is_err());
    ///
    /// // If the offset is big enough, then converting it to a UTC
    /// // timestamp will fit, even when using the maximum civil datetime.
    /// let dt = date(9999, 12, 31).at(23, 59, 59, 999_999_999);
    /// assert_eq!(tz::Offset::MAX.to_timestamp(dt).unwrap(), Timestamp::MAX);
    /// // But adjust the offset down 1 second is enough to go out-of-bounds.
    /// assert!((tz::Offset::MAX - 1.seconds()).to_timestamp(dt).is_err());
    /// ```
    ///
    /// Same as above, but for minimum values:
    ///
    /// ```
    /// use jiff::{civil::date, tz, Timestamp, ToSpan};
    ///
    /// let dt = date(-9999, 1, 1).at(1, 0, 0, 0);
    /// assert!(tz::offset(8).to_timestamp(dt).is_err());
    ///
    /// // If the offset is small enough, then converting it to a UTC
    /// // timestamp will fit, even when using the minimum civil datetime.
    /// let dt = date(-9999, 1, 1).at(0, 0, 0, 0);
    /// assert_eq!(tz::Offset::MIN.to_timestamp(dt).unwrap(), Timestamp::MIN);
    /// // But adjust the offset up 1 second is enough to go out-of-bounds.
    /// assert!((tz::Offset::MIN + 1.seconds()).to_timestamp(dt).is_err());
    /// ```
    #[inline]
    pub fn to_timestamp(
        self,
        dt: civil::DateTime,
    ) -> Result<Timestamp, Error> {
        datetime_zulu_to_timestamp(dt, self)
    }

    /// Adds the given span of time to this offset.
    ///
    /// Since time zone offsets have second resolution, any fractional seconds
    /// in the duration given are ignored.
    ///
    /// This operation accepts three different duration types: [`Span`],
    /// [`SignedDuration`] or [`std::time::Duration`]. This is achieved via
    /// `From` trait implementations for the [`OffsetArithmetic`] type.
    ///
    /// # Errors
    ///
    /// This returns an error if the result of adding the given span would
    /// exceed the minimum or maximum allowed `Offset` value.
    ///
    /// This also returns an error if the span given contains any non-zero
    /// units bigger than hours.
    ///
    /// # Example
    ///
    /// This example shows how to add one hour to an offset (if the offset
    /// corresponds to standard time, then adding an hour will usually give
    /// you DST time):
    ///
    /// ```
    /// use jiff::{tz, ToSpan};
    ///
    /// let off = tz::offset(-5);
    /// assert_eq!(off.checked_add(1.hours()).unwrap(), tz::offset(-4));
    /// ```
    ///
    /// And note that while fractional seconds are ignored, units less than
    /// seconds aren't ignored if they sum up to a duration at least as big
    /// as one second:
    ///
    /// ```
    /// use jiff::{tz, ToSpan};
    ///
    /// let off = tz::offset(5);
    /// let span = 900.milliseconds()
    ///     .microseconds(50_000)
    ///     .nanoseconds(50_000_000);
    /// assert_eq!(
    ///     off.checked_add(span).unwrap(),
    ///     tz::Offset::from_seconds((5 * 60 * 60) + 1).unwrap(),
    /// );
    /// // Any leftover fractional part is ignored.
    /// let span = 901.milliseconds()
    ///     .microseconds(50_001)
    ///     .nanoseconds(50_000_001);
    /// assert_eq!(
    ///     off.checked_add(span).unwrap(),
    ///     tz::Offset::from_seconds((5 * 60 * 60) + 1).unwrap(),
    /// );
    /// ```
    ///
    /// This example shows some cases where checked addition will fail.
    ///
    /// ```
    /// use jiff::{tz::Offset, ToSpan};
    ///
    /// // Adding units above 'hour' always results in an error.
    /// assert!(Offset::UTC.checked_add(1.day()).is_err());
    /// assert!(Offset::UTC.checked_add(1.week()).is_err());
    /// assert!(Offset::UTC.checked_add(1.month()).is_err());
    /// assert!(Offset::UTC.checked_add(1.year()).is_err());
    ///
    /// // Adding even 1 second to the max, or subtracting 1 from the min,
    /// // will result in overflow and thus an error will be returned.
    /// assert!(Offset::MIN.checked_add(-1.seconds()).is_err());
    /// assert!(Offset::MAX.checked_add(1.seconds()).is_err());
    /// ```
    ///
    /// # Example: adding absolute durations
    ///
    /// This shows how to add signed and unsigned absolute durations to an
    /// `Offset`. Like with `Span`s, any fractional seconds are ignored.
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// use jiff::{tz::offset, SignedDuration};
    ///
    /// let off = offset(-10);
    ///
    /// let dur = SignedDuration::from_hours(11);
    /// assert_eq!(off.checked_add(dur)?, offset(1));
    /// assert_eq!(off.checked_add(-dur)?, offset(-21));
    ///
    /// // Any leftover time is truncated. That is, only
    /// // whole seconds from the duration are considered.
    /// let dur = Duration::new(3 * 60 * 60, 999_999_999);
    /// assert_eq!(off.checked_add(dur)?, offset(-7));
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn checked_add<A: Into<OffsetArithmetic>>(
        self,
        duration: A,
    ) -> Result<Offset, Error> {
        let duration: OffsetArithmetic = duration.into();
        duration.checked_add(self)
    }

    #[inline]
    fn checked_add_span(self, span: Span) -> Result<Offset, Error> {
        if let Some(err) = span.smallest_non_time_non_zero_unit_error() {
            return Err(err);
        }
        let span_seconds = t::SpanZoneOffset::try_rfrom(
            "span-seconds",
            span.to_invariant_nanoseconds().div_ceil(t::NANOS_PER_SECOND),
        )?;
        let offset_seconds = self.seconds_ranged();
        let seconds =
            offset_seconds.try_checked_add("offset-seconds", span_seconds)?;
        Ok(Offset::from_seconds_ranged(seconds))
    }

    #[inline]
    fn checked_add_duration(
        self,
        duration: SignedDuration,
    ) -> Result<Offset, Error> {
        let duration =
            t::SpanZoneOffset::try_new("duration-seconds", duration.as_secs())
                .with_context(|| {
                    err!(
                        "adding signed duration {duration:?} \
                         to offset {self} overflowed maximum offset seconds"
                    )
                })?;
        let offset_seconds = self.seconds_ranged();
        let seconds = offset_seconds
            .try_checked_add("offset-seconds", duration)
            .with_context(|| {
                err!(
                    "adding signed duration {duration:?} \
                     to offset {self} overflowed"
                )
            })?;
        Ok(Offset::from_seconds_ranged(seconds))
    }

    /// This routine is identical to [`Offset::checked_add`] with the duration
    /// negated.
    ///
    /// # Errors
    ///
    /// This has the same error conditions as [`Offset::checked_add`].
    ///
    /// # Example
    ///
    /// ```
    /// use std::time::Duration;
    ///
    /// use jiff::{tz, SignedDuration, ToSpan};
    ///
    /// let off = tz::offset(-4);
    /// assert_eq!(
    ///     off.checked_sub(1.hours())?,
    ///     tz::offset(-5),
    /// );
    /// assert_eq!(
    ///     off.checked_sub(SignedDuration::from_hours(1))?,
    ///     tz::offset(-5),
    /// );
    /// assert_eq!(
    ///     off.checked_sub(Duration::from_secs(60 * 60))?,
    ///     tz::offset(-5),
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn checked_sub<A: Into<OffsetArithmetic>>(
        self,
        duration: A,
    ) -> Result<Offset, Error> {
        let duration: OffsetArithmetic = duration.into();
        duration.checked_neg().and_then(|oa| oa.checked_add(self))
    }

    /// This routine is identical to [`Offset::checked_add`], except the
    /// result saturates on overflow. That is, instead of overflow, either
    /// [`Offset::MIN`] or [`Offset::MAX`] is returned.
    ///
    /// # Example
    ///
    /// This example shows some cases where saturation will occur.
    ///
    /// ```
    /// use jiff::{tz::Offset, SignedDuration, ToSpan};
    ///
    /// // Adding units above 'day' always results in saturation.
    /// assert_eq!(Offset::UTC.saturating_add(1.weeks()), Offset::MAX);
    /// assert_eq!(Offset::UTC.saturating_add(1.months()), Offset::MAX);
    /// assert_eq!(Offset::UTC.saturating_add(1.years()), Offset::MAX);
    ///
    /// // Adding even 1 second to the max, or subtracting 1 from the min,
    /// // will result in saturationg.
    /// assert_eq!(Offset::MIN.saturating_add(-1.seconds()), Offset::MIN);
    /// assert_eq!(Offset::MAX.saturating_add(1.seconds()), Offset::MAX);
    ///
    /// // Adding absolute durations also saturates as expected.
    /// assert_eq!(Offset::UTC.saturating_add(SignedDuration::MAX), Offset::MAX);
    /// assert_eq!(Offset::UTC.saturating_add(SignedDuration::MIN), Offset::MIN);
    /// assert_eq!(Offset::UTC.saturating_add(std::time::Duration::MAX), Offset::MAX);
    /// ```
    #[inline]
    pub fn saturating_add<A: Into<OffsetArithmetic>>(
        self,
        duration: A,
    ) -> Offset {
        let duration: OffsetArithmetic = duration.into();
        self.checked_add(duration).unwrap_or_else(|_| {
            if duration.is_negative() {
                Offset::MIN
            } else {
                Offset::MAX
            }
        })
    }

    /// This routine is identical to [`Offset::saturating_add`] with the span
    /// parameter negated.
    ///
    /// # Example
    ///
    /// This example shows some cases where saturation will occur.
    ///
    /// ```
    /// use jiff::{tz::Offset, SignedDuration, ToSpan};
    ///
    /// // Adding units above 'day' always results in saturation.
    /// assert_eq!(Offset::UTC.saturating_sub(1.weeks()), Offset::MIN);
    /// assert_eq!(Offset::UTC.saturating_sub(1.months()), Offset::MIN);
    /// assert_eq!(Offset::UTC.saturating_sub(1.years()), Offset::MIN);
    ///
    /// // Adding even 1 second to the max, or subtracting 1 from the min,
    /// // will result in saturationg.
    /// assert_eq!(Offset::MIN.saturating_sub(1.seconds()), Offset::MIN);
    /// assert_eq!(Offset::MAX.saturating_sub(-1.seconds()), Offset::MAX);
    ///
    /// // Adding absolute durations also saturates as expected.
    /// assert_eq!(Offset::UTC.saturating_sub(SignedDuration::MAX), Offset::MIN);
    /// assert_eq!(Offset::UTC.saturating_sub(SignedDuration::MIN), Offset::MAX);
    /// assert_eq!(Offset::UTC.saturating_sub(std::time::Duration::MAX), Offset::MIN);
    /// ```
    #[inline]
    pub fn saturating_sub<A: Into<OffsetArithmetic>>(
        self,
        duration: A,
    ) -> Offset {
        let duration: OffsetArithmetic = duration.into();
        let Ok(duration) = duration.checked_neg() else { return Offset::MIN };
        self.saturating_add(duration)
    }

    /// Returns the span of time from this offset until the other given.
    ///
    /// When the `other` offset is more west (i.e., more negative) of the prime
    /// meridian than this offset, then the span returned will be negative.
    ///
    /// # Properties
    ///
    /// Adding the span returned to this offset will always equal the `other`
    /// offset given.
    ///
    /// # Examples
    ///
    /// ```
    /// use jiff::{tz, ToSpan};
    ///
    /// assert_eq!(
    ///     tz::offset(-5).until(tz::Offset::UTC),
    ///     (5 * 60 * 60).seconds().fieldwise(),
    /// );
    /// // Flipping the operands in this case results in a negative span.
    /// assert_eq!(
    ///     tz::Offset::UTC.until(tz::offset(-5)),
    ///     -(5 * 60 * 60).seconds().fieldwise(),
    /// );
    /// ```
    #[inline]
    pub fn until(self, other: Offset) -> Span {
        Span::new()
            .seconds_ranged(other.seconds_ranged() - self.seconds_ranged())
    }

    /// Returns the span of time since the other offset given from this offset.
    ///
    /// When the `other` is more east (i.e., more positive) of the prime
    /// meridian than this offset, then the span returned will be negative.
    ///
    /// # Properties
    ///
    /// Adding the span returned to the `other` offset will always equal this
    /// offset.
    ///
    /// # Examples
    ///
    /// ```
    /// use jiff::{tz, ToSpan};
    ///
    /// assert_eq!(
    ///     tz::Offset::UTC.since(tz::offset(-5)),
    ///     (5 * 60 * 60).seconds().fieldwise(),
    /// );
    /// // Flipping the operands in this case results in a negative span.
    /// assert_eq!(
    ///     tz::offset(-5).since(tz::Offset::UTC),
    ///     -(5 * 60 * 60).seconds().fieldwise(),
    /// );
    /// ```
    #[inline]
    pub fn since(self, other: Offset) -> Span {
        self.until(other).negate()
    }

    /// Returns an absolute duration representing the difference in time from
    /// this offset until the given `other` offset.
    ///
    /// When the `other` offset is more west (i.e., more negative) of the prime
    /// meridian than this offset, then the duration returned will be negative.
    ///
    /// Unlike [`Offset::until`], this returns a duration corresponding to a
    /// 96-bit integer of nanoseconds between two offsets.
    ///
    /// # When should I use this versus [`Offset::until`]?
    ///
    /// See the type documentation for [`SignedDuration`] for the section on
    /// when one should use [`Span`] and when one should use `SignedDuration`.
    /// In short, use `Span` (and therefore `Offset::until`) unless you have a
    /// specific reason to do otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// use jiff::{tz, SignedDuration};
    ///
    /// assert_eq!(
    ///     tz::offset(-5).duration_until(tz::Offset::UTC),
    ///     SignedDuration::from_hours(5),
    /// );
    /// // Flipping the operands in this case results in a negative span.
    /// assert_eq!(
    ///     tz::Offset::UTC.duration_until(tz::offset(-5)),
    ///     SignedDuration::from_hours(-5),
    /// );
    /// ```
    #[inline]
    pub fn duration_until(self, other: Offset) -> SignedDuration {
        SignedDuration::offset_until(self, other)
    }

    /// This routine is identical to [`Offset::duration_until`], but the order
    /// of the parameters is flipped.
    ///
    /// # Examples
    ///
    /// ```
    /// use jiff::{tz, SignedDuration};
    ///
    /// assert_eq!(
    ///     tz::Offset::UTC.duration_since(tz::offset(-5)),
    ///     SignedDuration::from_hours(5),
    /// );
    /// assert_eq!(
    ///     tz::offset(-5).duration_since(tz::Offset::UTC),
    ///     SignedDuration::from_hours(-5),
    /// );
    /// ```
    #[inline]
    pub fn duration_since(self, other: Offset) -> SignedDuration {
        SignedDuration::offset_until(other, self)
    }

    /// Returns a new offset that is rounded according to the given
    /// configuration.
    ///
    /// Rounding an offset has a number of parameters, all of which are
    /// optional. When no parameters are given, then no rounding is done, and
    /// the offset as given is returned. That is, it's a no-op.
    ///
    /// As is consistent with `Offset` itself, rounding only supports units of
    /// hours, minutes or seconds. If any other unit is provided, then an error
    /// is returned.
    ///
    /// The parameters are, in brief:
    ///
    /// * [`OffsetRound::smallest`] sets the smallest [`Unit`] that is allowed
    /// to be non-zero in the offset returned. By default, it is set to
    /// [`Unit::Second`], i.e., no rounding occurs. When the smallest unit is
    /// set to something bigger than seconds, then the non-zero units in the
    /// offset smaller than the smallest unit are used to determine how the
    /// offset should be rounded. For example, rounding `+01:59` to the nearest
    /// hour using the default rounding mode would produce `+02:00`.
    /// * [`OffsetRound::mode`] determines how to handle the remainder
    /// when rounding. The default is [`RoundMode::HalfExpand`], which
    /// corresponds to how you were likely taught to round in school.
    /// Alternative modes, like [`RoundMode::Trunc`], exist too. For example,
    /// a truncating rounding of `+01:59` to the nearest hour would
    /// produce `+01:00`.
    /// * [`OffsetRound::increment`] sets the rounding granularity to
    /// use for the configured smallest unit. For example, if the smallest unit
    /// is minutes and the increment is `15`, then the offset returned will
    /// always have its minute component set to a multiple of `15`.
    ///
    /// # Errors
    ///
    /// In general, there are two main ways for rounding to fail: an improper
    /// configuration like trying to round an offset to the nearest unit other
    /// than hours/minutes/seconds, or when overflow occurs. Overflow can occur
    /// when the offset would exceed the minimum or maximum `Offset` values.
    /// Typically, this can only realistically happen if the offset before
    /// rounding is already close to its minimum or maximum value.
    ///
    /// # Example: rounding to the nearest multiple of 15 minutes
    ///
    /// Most time zone offsets fall on an hour boundary, but some fall on the
    /// half-hour or even 15 minute boundary:
    ///
    /// ```
    /// use jiff::{tz::Offset, Unit};
    ///
    /// let offset = Offset::from_seconds(-(44 * 60 + 30)).unwrap();
    /// let rounded = offset.round((Unit::Minute, 15))?;
    /// assert_eq!(rounded, Offset::from_seconds(-45 * 60).unwrap());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// # Example: rounding can fail via overflow
    ///
    /// ```
    /// use jiff::{tz::Offset, Unit};
    ///
    /// assert_eq!(Offset::MAX.to_string(), "+25:59:59");
    /// assert_eq!(
    ///     Offset::MAX.round(Unit::Minute).unwrap_err().to_string(),
    ///     "rounding offset `+25:59:59` resulted in a duration of 26h, \
    ///      which overflows `Offset`",
    /// );
    /// ```
    #[inline]
    pub fn round<R: Into<OffsetRound>>(
        self,
        options: R,
    ) -> Result<Offset, Error> {
        let options: OffsetRound = options.into();
        options.round(self)
    }
}

impl Offset {
    /// This creates an `Offset` via hours/minutes/seconds components.
    ///
    /// Currently, it exists because it's convenient for use in tests.
    ///
    /// I originally wanted to expose this in the public API, but I couldn't
    /// decide on how I wanted to treat signedness. There are a variety of
    /// choices:
    ///
    /// * Require all values to be positive, and ask the caller to use
    /// `-offset` to negate it.
    /// * Require all values to have the same sign. If any differs, either
    /// panic or return an error.
    /// * If any have a negative sign, then behave as if all have a negative
    /// sign.
    /// * Permit any combination of sign and combine them correctly.
    /// Similar to how `std::time::Duration::new(-1s, 1ns)` is turned into
    /// `-999,999,999ns`.
    ///
    /// I think the last option is probably the right behavior, but also the
    /// most annoying to implement. But if someone wants to take a crack at it,
    /// a PR is welcome.
    #[cfg(test)]
    #[inline]
    pub(crate) const fn hms(hours: i8, minutes: i8, seconds: i8) -> Offset {
        let total = (hours as i32 * 60 * 60)
            + (minutes as i32 * 60)
            + (seconds as i32);
        Offset { span: t::SpanZoneOffset::new_unchecked(total) }
    }

    #[inline]
    pub(crate) fn from_hours_ranged(
        hours: impl RInto<t::SpanZoneOffsetHours>,
    ) -> Offset {
        let hours: t::SpanZoneOffset = hours.rinto().rinto();
        Offset::from_seconds_ranged(hours * t::SECONDS_PER_HOUR)
    }

    #[inline]
    pub(crate) fn from_seconds_ranged(
        seconds: impl RInto<t::SpanZoneOffset>,
    ) -> Offset {
        Offset { span: seconds.rinto() }
    }

    #[inline]
    pub(crate) fn seconds_ranged(self) -> t::SpanZoneOffset {
        self.span
    }

    #[inline]
    pub(crate) fn part_hours_ranged(self) -> t::SpanZoneOffsetHours {
        self.span.div_ceil(t::SECONDS_PER_HOUR).rinto()
    }

    #[inline]
    pub(crate) fn part_minutes_ranged(self) -> t::SpanZoneOffsetMinutes {
        self.span
            .div_ceil(t::SECONDS_PER_MINUTE)
            .rem_ceil(t::MINUTES_PER_HOUR)
            .rinto()
    }

    #[inline]
    pub(crate) fn part_seconds_ranged(self) -> t::SpanZoneOffsetSeconds {
        self.span.rem_ceil(t::SECONDS_PER_MINUTE).rinto()
    }

    #[inline]
    pub(crate) fn to_array_str(&self) -> ArrayStr<9> {
        use core::fmt::Write;

        let mut dst = ArrayStr::new("").unwrap();
        // OK because the string representation of an offset
        // can never exceed 9 bytes. The longest possible, e.g.,
        // is `-25:59:59`.
        write!(&mut dst, "{}", self).unwrap();
        dst
    }
}

impl core::fmt::Debug for Offset {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        let sign = if self.seconds_ranged() < 0 { "-" } else { "" };
        write!(
            f,
            "{sign}{:02}:{:02}:{:02}",
            self.part_hours_ranged().abs(),
            self.part_minutes_ranged().abs(),
            self.part_seconds_ranged().abs(),
        )
    }
}

impl core::fmt::Display for Offset {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        let sign = if self.span < 0 { "-" } else { "+" };
        let hours = self.part_hours_ranged().abs().get();
        let minutes = self.part_minutes_ranged().abs().get();
        let seconds = self.part_seconds_ranged().abs().get();
        if hours == 0 && minutes == 0 && seconds == 0 {
            write!(f, "+00")
        } else if hours != 0 && minutes == 0 && seconds == 0 {
            write!(f, "{sign}{hours:02}")
        } else if minutes != 0 && seconds == 0 {
            write!(f, "{sign}{hours:02}:{minutes:02}")
        } else {
            write!(f, "{sign}{hours:02}:{minutes:02}:{seconds:02}")
        }
    }
}

/// Adds a span of time to an offset. This panics on overflow.
///
/// For checked arithmetic, see [`Offset::checked_add`].
impl Add<Span> for Offset {
    type Output = Offset;

    #[inline]
    fn add(self, rhs: Span) -> Offset {
        self.checked_add(rhs)
            .expect("adding span to offset should not overflow")
    }
}

/// Adds a span of time to an offset in place. This panics on overflow.
///
/// For checked arithmetic, see [`Offset::checked_add`].
impl AddAssign<Span> for Offset {
    #[inline]
    fn add_assign(&mut self, rhs: Span) {
        *self = self.add(rhs);
    }
}

/// Subtracts a span of time from an offset. This panics on overflow.
///
/// For checked arithmetic, see [`Offset::checked_sub`].
impl Sub<Span> for Offset {
    type Output = Offset;

    #[inline]
    fn sub(self, rhs: Span) -> Offset {
        self.checked_sub(rhs)
            .expect("subtracting span from offsetsshould not overflow")
    }
}

/// Subtracts a span of time from an offset in place. This panics on overflow.
///
/// For checked arithmetic, see [`Offset::checked_sub`].
impl SubAssign<Span> for Offset {
    #[inline]
    fn sub_assign(&mut self, rhs: Span) {
        *self = self.sub(rhs);
    }
}

/// Computes the span of time between two offsets.
///
/// This will return a negative span when the offset being subtracted is
/// greater (i.e., more east with respect to the prime meridian).
impl Sub for Offset {
    type Output = Span;

    #[inline]
    fn sub(self, rhs: Offset) -> Span {
        self.since(rhs)
    }
}

/// Adds a signed duration of time to an offset. This panics on overflow.
///
/// For checked arithmetic, see [`Offset::checked_add`].
impl Add<SignedDuration> for Offset {
    type Output = Offset;

    #[inline]
    fn add(self, rhs: SignedDuration) -> Offset {
        self.checked_add(rhs)
            .expect("adding signed duration to offset should not overflow")
    }
}

/// Adds a signed duration of time to an offset in place. This panics on
/// overflow.
///
/// For checked arithmetic, see [`Offset::checked_add`].
impl AddAssign<SignedDuration> for Offset {
    #[inline]
    fn add_assign(&mut self, rhs: SignedDuration) {
        *self = self.add(rhs);
    }
}

/// Subtracts a signed duration of time from an offset. This panics on
/// overflow.
///
/// For checked arithmetic, see [`Offset::checked_sub`].
impl Sub<SignedDuration> for Offset {
    type Output = Offset;

    #[inline]
    fn sub(self, rhs: SignedDuration) -> Offset {
        self.checked_sub(rhs).expect(
            "subtracting signed duration from offsetsshould not overflow",
        )
    }
}

/// Subtracts a signed duration of time from an offset in place. This panics on
/// overflow.
///
/// For checked arithmetic, see [`Offset::checked_sub`].
impl SubAssign<SignedDuration> for Offset {
    #[inline]
    fn sub_assign(&mut self, rhs: SignedDuration) {
        *self = self.sub(rhs);
    }
}

/// Adds an unsigned duration of time to an offset. This panics on overflow.
///
/// For checked arithmetic, see [`Offset::checked_add`].
impl Add<UnsignedDuration> for Offset {
    type Output = Offset;

    #[inline]
    fn add(self, rhs: UnsignedDuration) -> Offset {
        self.checked_add(rhs)
            .expect("adding unsigned duration to offset should not overflow")
    }
}

/// Adds an unsigned duration of time to an offset in place. This panics on
/// overflow.
///
/// For checked arithmetic, see [`Offset::checked_add`].
impl AddAssign<UnsignedDuration> for Offset {
    #[inline]
    fn add_assign(&mut self, rhs: UnsignedDuration) {
        *self = self.add(rhs);
    }
}

/// Subtracts an unsigned duration of time from an offset. This panics on
/// overflow.
///
/// For checked arithmetic, see [`Offset::checked_sub`].
impl Sub<UnsignedDuration> for Offset {
    type Output = Offset;

    #[inline]
    fn sub(self, rhs: UnsignedDuration) -> Offset {
        self.checked_sub(rhs).expect(
            "subtracting unsigned duration from offsetsshould not overflow",
        )
    }
}

/// Subtracts an unsigned duration of time from an offset in place. This panics
/// on overflow.
///
/// For checked arithmetic, see [`Offset::checked_sub`].
impl SubAssign<UnsignedDuration> for Offset {
    #[inline]
    fn sub_assign(&mut self, rhs: UnsignedDuration) {
        *self = self.sub(rhs);
    }
}

/// Negate this offset.
///
/// A positive offset becomes negative and vice versa. This is a no-op for the
/// zero offset.
///
/// This never panics.
impl Neg for Offset {
    type Output = Offset;

    #[inline]
    fn neg(self) -> Offset {
        self.negate()
    }
}

/// Converts a `SignedDuration` to a time zone offset.
///
/// If the signed duration has fractional seconds, then it is automatically
/// rounded to the nearest second. (Because an `Offset` has only second
/// precision.)
///
/// # Errors
///
/// This returns an error if the duration overflows the limits of an `Offset`.
///
/// # Example
///
/// ```
/// use jiff::{tz::{self, Offset}, SignedDuration};
///
/// let sdur = SignedDuration::from_secs(-5 * 60 * 60);
/// let offset = Offset::try_from(sdur)?;
/// assert_eq!(offset, tz::offset(-5));
///
/// // Sub-seconds results in rounded.
/// let sdur = SignedDuration::new(-5 * 60 * 60, -500_000_000);
/// let offset = Offset::try_from(sdur)?;
/// assert_eq!(offset, tz::Offset::from_seconds(-(5 * 60 * 60 + 1)).unwrap());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
impl TryFrom<SignedDuration> for Offset {
    type Error = Error;

    fn try_from(sdur: SignedDuration) -> Result<Offset, Error> {
        let mut seconds = sdur.as_secs();
        let subsec = sdur.subsec_nanos();
        if subsec >= 500_000_000 {
            seconds = seconds.saturating_add(1);
        } else if subsec <= -500_000_000 {
            seconds = seconds.saturating_sub(1);
        }
        let seconds = i32::try_from(seconds).map_err(|_| {
            err!("`SignedDuration` of {sdur} overflows `Offset`")
        })?;
        Offset::from_seconds(seconds)
            .map_err(|_| err!("`SignedDuration` of {sdur} overflows `Offset`"))
    }
}

/// Options for [`Offset::checked_add`] and [`Offset::checked_sub`].
///
/// This type provides a way to ergonomically add one of a few different
/// duration types to a [`Offset`].
///
/// The main way to construct values of this type is with its `From` trait
/// implementations:
///
/// * `From<Span> for OffsetArithmetic` adds (or subtracts) the given span to
/// the receiver offset.
/// * `From<SignedDuration> for OffsetArithmetic` adds (or subtracts)
/// the given signed duration to the receiver offset.
/// * `From<std::time::Duration> for OffsetArithmetic` adds (or subtracts)
/// the given unsigned duration to the receiver offset.
///
/// # Example
///
/// ```
/// use std::time::Duration;
///
/// use jiff::{tz::offset, SignedDuration, ToSpan};
///
/// let off = offset(-10);
/// assert_eq!(off.checked_add(11.hours())?, offset(1));
/// assert_eq!(off.checked_add(SignedDuration::from_hours(11))?, offset(1));
/// assert_eq!(off.checked_add(Duration::from_secs(11 * 60 * 60))?, offset(1));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy, Debug)]
pub struct OffsetArithmetic {
    duration: Duration,
}

impl OffsetArithmetic {
    #[inline]
    fn checked_add(self, offset: Offset) -> Result<Offset, Error> {
        match self.duration.to_signed()? {
            SDuration::Span(span) => offset.checked_add_span(span),
            SDuration::Absolute(sdur) => offset.checked_add_duration(sdur),
        }
    }

    #[inline]
    fn checked_neg(self) -> Result<OffsetArithmetic, Error> {
        let duration = self.duration.checked_neg()?;
        Ok(OffsetArithmetic { duration })
    }

    #[inline]
    fn is_negative(&self) -> bool {
        self.duration.is_negative()
    }
}

impl From<Span> for OffsetArithmetic {
    fn from(span: Span) -> OffsetArithmetic {
        let duration = Duration::from(span);
        OffsetArithmetic { duration }
    }
}

impl From<SignedDuration> for OffsetArithmetic {
    fn from(sdur: SignedDuration) -> OffsetArithmetic {
        let duration = Duration::from(sdur);
        OffsetArithmetic { duration }
    }
}

impl From<UnsignedDuration> for OffsetArithmetic {
    fn from(udur: UnsignedDuration) -> OffsetArithmetic {
        let duration = Duration::from(udur);
        OffsetArithmetic { duration }
    }
}

impl<'a> From<&'a Span> for OffsetArithmetic {
    fn from(span: &'a Span) -> OffsetArithmetic {
        OffsetArithmetic::from(*span)
    }
}

impl<'a> From<&'a SignedDuration> for OffsetArithmetic {
    fn from(sdur: &'a SignedDuration) -> OffsetArithmetic {
        OffsetArithmetic::from(*sdur)
    }
}

impl<'a> From<&'a UnsignedDuration> for OffsetArithmetic {
    fn from(udur: &'a UnsignedDuration) -> OffsetArithmetic {
        OffsetArithmetic::from(*udur)
    }
}

/// Options for [`Offset::round`].
///
/// This type provides a way to configure the rounding of an offset. This
/// includes setting the smallest unit (i.e., the unit to round), the rounding
/// increment and the rounding mode (e.g., "ceil" or "truncate").
///
/// [`Offset::round`] accepts anything that implements
/// `Into<OffsetRound>`. There are a few key trait implementations that
/// make this convenient:
///
/// * `From<Unit> for OffsetRound` will construct a rounding
/// configuration where the smallest unit is set to the one given.
/// * `From<(Unit, i64)> for OffsetRound` will construct a rounding
/// configuration where the smallest unit and the rounding increment are set to
/// the ones given.
///
/// In order to set other options (like the rounding mode), one must explicitly
/// create a `OffsetRound` and pass it to `Offset::round`.
///
/// # Example
///
/// This example shows how to always round up to the nearest half-hour:
///
/// ```
/// use jiff::{tz::{Offset, OffsetRound}, RoundMode, Unit};
///
/// let offset = Offset::from_seconds(4 * 60 * 60 + 17 * 60).unwrap();
/// let rounded = offset.round(
///     OffsetRound::new()
///         .smallest(Unit::Minute)
///         .increment(30)
///         .mode(RoundMode::Expand),
/// )?;
/// assert_eq!(rounded, Offset::from_seconds(4 * 60 * 60 + 30 * 60).unwrap());
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy, Debug)]
pub struct OffsetRound(SignedDurationRound);

impl OffsetRound {
    /// Create a new default configuration for rounding a time zone offset via
    /// [`Offset::round`].
    ///
    /// The default configuration does no rounding.
    #[inline]
    pub fn new() -> OffsetRound {
        OffsetRound(SignedDurationRound::new().smallest(Unit::Second))
    }

    /// Set the smallest units allowed in the offset returned. These are the
    /// units that the offset is rounded to.
    ///
    /// # Errors
    ///
    /// The unit must be [`Unit::Hour`], [`Unit::Minute`] or [`Unit::Second`].
    ///
    /// # Example
    ///
    /// A basic example that rounds to the nearest minute:
    ///
    /// ```
    /// use jiff::{tz::Offset, Unit};
    ///
    /// let offset = Offset::from_seconds(-(5 * 60 * 60 + 30)).unwrap();
    /// assert_eq!(offset.round(Unit::Hour)?, Offset::from_hours(-5).unwrap());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn smallest(self, unit: Unit) -> OffsetRound {
        OffsetRound(self.0.smallest(unit))
    }

    /// Set the rounding mode.
    ///
    /// This defaults to [`RoundMode::HalfExpand`], which makes rounding work
    /// like how you were taught in school.
    ///
    /// # Example
    ///
    /// A basic example that rounds to the nearest hour, but changing its
    /// rounding mode to truncation:
    ///
    /// ```
    /// use jiff::{tz::{Offset, OffsetRound}, RoundMode, Unit};
    ///
    /// let offset = Offset::from_seconds(-(5 * 60 * 60 + 30 * 60)).unwrap();
    /// assert_eq!(
    ///     offset.round(OffsetRound::new()
    ///         .smallest(Unit::Hour)
    ///         .mode(RoundMode::Trunc),
    ///     )?,
    ///     // The default round mode does rounding like
    ///     // how you probably learned in school, and would
    ///     // result in rounding to -6 hours. But we
    ///     // change it to truncation here, which makes it
    ///     // round -5.
    ///     Offset::from_hours(-5).unwrap(),
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn mode(self, mode: RoundMode) -> OffsetRound {
        OffsetRound(self.0.mode(mode))
    }

    /// Set the rounding increment for the smallest unit.
    ///
    /// The default value is `1`. Other values permit rounding the smallest
    /// unit to the nearest integer increment specified. For example, if the
    /// smallest unit is set to [`Unit::Minute`], then a rounding increment of
    /// `30` would result in rounding in increments of a half hour. That is,
    /// the only minute value that could result would be `0` or `30`.
    ///
    /// # Errors
    ///
    /// The rounding increment must divide evenly into the next highest unit
    /// after the smallest unit configured (and must not be equivalent to
    /// it). For example, if the smallest unit is [`Unit::Second`], then
    /// *some* of the valid values for the rounding increment are `1`, `2`,
    /// `4`, `5`, `15` and `30`. Namely, any integer that divides evenly into
    /// `60` seconds since there are `60` seconds in the next highest unit
    /// (minutes).
    ///
    /// # Example
    ///
    /// This shows how to round an offset to the nearest 30 minute increment:
    ///
    /// ```
    /// use jiff::{tz::Offset, Unit};
    ///
    /// let offset = Offset::from_seconds(4 * 60 * 60 + 15 * 60).unwrap();
    /// assert_eq!(
    ///     offset.round((Unit::Minute, 30))?,
    ///     Offset::from_seconds(4 * 60 * 60 + 30 * 60).unwrap(),
    /// );
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    #[inline]
    pub fn increment(self, increment: i64) -> OffsetRound {
        OffsetRound(self.0.increment(increment))
    }

    /// Does the actual offset rounding.
    fn round(&self, offset: Offset) -> Result<Offset, Error> {
        let smallest = self.0.get_smallest();
        if !(Unit::Second <= smallest && smallest <= Unit::Hour) {
            return Err(err!(
                "rounding `Offset` failed because \
                 a unit of {plural} was provided, but offset rounding \
                 can only use hours, minutes or seconds",
                plural = smallest.plural(),
            ));
        }
        let rounded_sdur = SignedDuration::from(offset).round(self.0)?;
        Offset::try_from(rounded_sdur).map_err(|_| {
            err!(
                "rounding offset `{offset}` resulted in a duration \
                 of {rounded_sdur:?}, which overflows `Offset`",
            )
        })
    }
}

impl Default for OffsetRound {
    fn default() -> OffsetRound {
        OffsetRound::new()
    }
}

impl From<Unit> for OffsetRound {
    fn from(unit: Unit) -> OffsetRound {
        OffsetRound::default().smallest(unit)
    }
}

impl From<(Unit, i64)> for OffsetRound {
    fn from((unit, increment): (Unit, i64)) -> OffsetRound {
        OffsetRound::default().smallest(unit).increment(increment)
    }
}

/// Configuration for resolving disparities between an offset and a time zone.
///
/// A conflict between an offset and a time zone most commonly appears in a
/// datetime string. For example, `2024-06-14T17:30-05[America/New_York]`
/// has a definitive inconsistency between the reported offset (`-05`) and
/// the time zone (`America/New_York`), because at this time in New York,
/// daylight saving time (DST) was in effect. In New York in the year 2024,
/// DST corresponded to the UTC offset `-04`.
///
/// Other conflict variations exist. For example, in 2019, Brazil abolished
/// DST completely. But if one were to create a datetime for 2020 in 2018, that
/// datetime in 2020 would reflect the DST rules as they exist in 2018. That
/// could in turn result in a datetime with an offset that is incorrect with
/// respect to the rules in 2019.
///
/// For this reason, this crate exposes a few ways of resolving these
/// conflicts. It is most commonly used as configuration for parsing
/// [`Zoned`](crate::Zoned) values via
/// [`fmt::temporal::DateTimeParser::offset_conflict`](crate::fmt::temporal::DateTimeParser::offset_conflict). But this configuration can also be used directly via
/// [`OffsetConflict::resolve`].
///
/// The default value is `OffsetConflict::Reject`, which results in an
/// error being returned if the offset and a time zone are not in agreement.
/// This is the default so that Jiff does not automatically make silent choices
/// about whether to prefer the time zone or the offset. The
/// [`fmt::temporal::DateTimeParser::parse_zoned_with`](crate::fmt::temporal::DateTimeParser::parse_zoned_with)
/// documentation shows an example demonstrating its utility in the face
/// of changes in the law, such as the abolition of daylight saving time.
/// By rejecting such things, one can ensure that the original timestamp is
/// preserved or else an error occurs.
///
/// This enum is non-exhaustive so that other forms of offset conflicts may be
/// added in semver compatible releases.
///
/// # Example
///
/// This example shows how to always use the time zone even if the offset is
/// wrong.
///
/// ```
/// use jiff::{civil::date, tz};
///
/// let dt = date(2024, 6, 14).at(17, 30, 0, 0);
/// let offset = tz::offset(-5); // wrong! should be -4
/// let newyork = tz::db().get("America/New_York")?;
///
/// // The default conflict resolution, 'Reject', will error.
/// let result = tz::OffsetConflict::Reject
///     .resolve(dt, offset, newyork.clone());
/// assert!(result.is_err());
///
/// // But we can change it to always prefer the time zone.
/// let zdt = tz::OffsetConflict::AlwaysTimeZone
///     .resolve(dt, offset, newyork.clone())?
///     .unambiguous()?;
/// assert_eq!(zdt.datetime(), date(2024, 6, 14).at(17, 30, 0, 0));
/// // The offset has been corrected automatically.
/// assert_eq!(zdt.offset(), tz::offset(-4));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
///
/// # Example: parsing
///
/// This example shows how to set the offset conflict resolution configuration
/// while parsing a [`Zoned`](crate::Zoned) datetime. In this example, we
/// always prefer the offset, even if it conflicts with the time zone.
///
/// ```
/// use jiff::{civil::date, fmt::temporal::DateTimeParser, tz};
///
/// static PARSER: DateTimeParser = DateTimeParser::new()
///     .offset_conflict(tz::OffsetConflict::AlwaysOffset);
///
/// let zdt = PARSER.parse_zoned("2024-06-14T17:30-05[America/New_York]")?;
/// // The time *and* offset have been corrected. The offset given was invalid,
/// // so it cannot be kept, but the timestamp returned is equivalent to
/// // `2024-06-14T17:30-05`. It is just adjusted automatically to be correct
/// // in the `America/New_York` time zone.
/// assert_eq!(zdt.datetime(), date(2024, 6, 14).at(18, 30, 0, 0));
/// assert_eq!(zdt.offset(), tz::offset(-4));
///
/// # Ok::<(), Box<dyn std::error::Error>>(())
/// ```
#[derive(Clone, Copy, Debug, Default)]
#[non_exhaustive]
pub enum OffsetConflict {
    /// When the offset and time zone are in conflict, this will always use
    /// the offset to interpret the date time.
    ///
    /// When resolving to a [`AmbiguousZoned`], the time zone attached
    /// to the timestamp will still be the same as the time zone given. The
    /// difference here is that the offset will be adjusted such that it is
    /// correct for the given time zone. However, the timestamp itself will
    /// always match the datetime and offset given (and which is always
    /// unambiguous).
    ///
    /// Basically, you should use this option when you want to keep the exact
    /// time unchanged (as indicated by the datetime and offset), even if it
    /// means a change to civil time.
    AlwaysOffset,
    /// When the offset and time zone are in conflict, this will always use
    /// the time zone to interpret the date time.
    ///
    /// When resolving to an [`AmbiguousZoned`], the offset attached to the
    /// timestamp will always be determined by only looking at the time zone.
    /// This in turn implies that the timestamp returned could be ambiguous,
    /// since this conflict resolution strategy specifically ignores the
    /// offset. (And, we're only at this point because the offset is not
    /// possible for the given time zone, so it can't be used in concert with
    /// the time zone anyway.) This is unlike the `AlwaysOffset` strategy where
    /// the timestamp returned is guaranteed to be unambiguous.
    ///
    /// You should use this option when you want to keep the civil time
    /// unchanged even if it means a change to the exact time.
    AlwaysTimeZone,
    /// Always attempt to use the offset to resolve a datetime to a timestamp,
    /// unless the offset is invalid for the provided time zone. In that case,
    /// use the time zone. When the time zone is used, it's possible for an
    /// ambiguous datetime to be returned.
    ///
    /// See [`ZonedWith::offset_conflict`](crate::ZonedWith::offset_conflict)
    /// for an example of when this strategy is useful.
    PreferOffset,
    /// When the offset and time zone are in conflict, this strategy always
    /// results in conflict resolution returning an error.
    ///
    /// This is the default since a conflict between the offset and the time
    /// zone usually implies an invalid datetime in some way.
    #[default]
    Reject,
}

impl OffsetConflict {
    /// Resolve a potential conflict between an [`Offset`] and a [`TimeZone`].
    ///
    /// # Errors
    ///
    /// This returns an error if this would have returned a timestamp outside
    /// of its minimum and maximum values.
    ///
    /// This can also return an error when using the [`OffsetConflict::Reject`]
    /// strategy. Namely, when using the `Reject` strategy, any offset that is
    /// not compatible with the given datetime and time zone will always result
    /// in an error.
    ///
    /// # Example
    ///
    /// This example shows how each of the different conflict resolution
    /// strategies are applied.
    ///
    /// ```
    /// use jiff::{civil::date, tz};
    ///
    /// let dt = date(2024, 6, 14).at(17, 30, 0, 0);
    /// let offset = tz::offset(-5); // wrong! should be -4
    /// let newyork = tz::db().get("America/New_York")?;
    ///
    /// // Here, we use the offset and ignore the time zone.
    /// let zdt = tz::OffsetConflict::AlwaysOffset
    ///     .resolve(dt, offset, newyork.clone())?
    ///     .unambiguous()?;
    /// // The datetime (and offset) have been corrected automatically
    /// // and the resulting Zoned instant corresponds precisely to
    /// // `2024-06-14T17:30-05[UTC]`.
    /// assert_eq!(zdt.to_string(), "2024-06-14T18:30:00-04:00[America/New_York]");
    ///
    /// // Here, we use the time zone and ignore the offset.
    /// let zdt = tz::OffsetConflict::AlwaysTimeZone
    ///     .resolve(dt, offset, newyork.clone())?
    ///     .unambiguous()?;
    /// // The offset has been corrected automatically and the resulting
    /// // Zoned instant corresponds precisely to `2024-06-14T17:30-04[UTC]`.
    /// // Notice how the civil time remains the same, but the exact instant
    /// // has changed!
    /// assert_eq!(zdt.to_string(), "2024-06-14T17:30:00-04:00[America/New_York]");
    ///
    /// // Here, we prefer the offset, but fall back to the time zone.
    /// // In this example, it has the same behavior as `AlwaysTimeZone`.
    /// let zdt = tz::OffsetConflict::PreferOffset
    ///     .resolve(dt, offset, newyork.clone())?
    ///     .unambiguous()?;
    /// assert_eq!(zdt.to_string(), "2024-06-14T17:30:00-04:00[America/New_York]");
    ///
    /// // The default conflict resolution, 'Reject', will error.
    /// let result = tz::OffsetConflict::Reject
    ///     .resolve(dt, offset, newyork.clone());
    /// assert!(result.is_err());
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn resolve(
        self,
        dt: civil::DateTime,
        offset: Offset,
        tz: TimeZone,
    ) -> Result<AmbiguousZoned, Error> {
        self.resolve_with(dt, offset, tz, |off1, off2| off1 == off2)
    }

    /// Resolve a potential conflict between an [`Offset`] and a [`TimeZone`]
    /// using the given definition of equality for an `Offset`.
    ///
    /// The equality predicate is always given a pair of offsets where the
    /// first is the offset given to `resolve_with` and the second is the
    /// offset found in the `TimeZone`.
    ///
    /// # Errors
    ///
    /// This returns an error if this would have returned a timestamp outside
    /// of its minimum and maximum values.
    ///
    /// This can also return an error when using the [`OffsetConflict::Reject`]
    /// strategy. Namely, when using the `Reject` strategy, any offset that is
    /// not compatible with the given datetime and time zone will always result
    /// in an error.
    ///
    /// # Example
    ///
    /// Unlike [`OffsetConflict::resolve`], this routine permits overriding
    /// the definition of equality used for comparing offsets. In
    /// `OffsetConflict::resolve`, exact equality is used. This can be
    /// troublesome in some cases when a time zone has an offset with
    /// fractional minutes, such as `Africa/Monrovia` before 1972.
    ///
    /// Because RFC 3339 and RFC 9557 do not support time zone offsets
    /// with fractional minutes, Jiff will serialize offsets with
    /// fractional minutes by rounding to the nearest minute. This
    /// will result in a different offset than what is actually
    /// used in the time zone. Parsing this _should_ succeed, but
    /// if exact offset equality is used, it won't. This is why a
    /// [`fmt::temporal::DateTimeParser`](crate::fmt::temporal::DateTimeParser)
    /// uses this routine with offset equality that rounds offsets to the
    /// nearest minute before comparison.
    ///
    /// ```
    /// use jiff::{civil::date, tz::{Offset, OffsetConflict, TimeZone}, Unit};
    ///
    /// let dt = date(1968, 2, 1).at(23, 15, 0, 0);
    /// let offset = Offset::from_seconds(-(44 * 60 + 30)).unwrap();
    /// let zdt = dt.in_tz("Africa/Monrovia")?;
    /// assert_eq!(zdt.offset(), offset);
    /// // Notice that the offset has been rounded!
    /// assert_eq!(zdt.to_string(), "1968-02-01T23:15:00-00:45[Africa/Monrovia]");
    ///
    /// // Now imagine parsing extracts the civil datetime, the offset and
    /// // the time zone, and then naively does exact offset comparison:
    /// let tz = TimeZone::get("Africa/Monrovia")?;
    /// // This is the parsed offset, which won't precisely match the actual
    /// // offset used by `Africa/Monrovia` at this time.
    /// let offset = Offset::from_seconds(-45 * 60).unwrap();
    /// let result = OffsetConflict::Reject.resolve(dt, offset, tz.clone());
    /// assert_eq!(
    ///     result.unwrap_err().to_string(),
    ///     "datetime 1968-02-01T23:15:00 could not resolve to a timestamp \
    ///      since 'reject' conflict resolution was chosen, and because \
    ///      datetime has offset -00:45, but the time zone Africa/Monrovia \
    ///      for the given datetime unambiguously has offset -00:44:30",
    /// );
    /// let is_equal = |parsed: Offset, candidate: Offset| {
    ///     parsed == candidate || candidate.round(Unit::Minute).map_or(
    ///         parsed == candidate,
    ///         |candidate| parsed == candidate,
    ///     )
    /// };
    /// let zdt = OffsetConflict::Reject.resolve_with(
    ///     dt,
    ///     offset,
    ///     tz.clone(),
    ///     is_equal,
    /// )?.unambiguous()?;
    /// // Notice that the offset is the actual offset from the time zone:
    /// assert_eq!(zdt.offset(), Offset::from_seconds(-(44 * 60 + 30)).unwrap());
    /// // But when we serialize, the offset gets rounded. If we didn't
    /// // do this, we'd risk the datetime not being parsable by other
    /// // implementations since RFC 3339 and RFC 9557 don't support fractional
    /// // minutes in the offset.
    /// assert_eq!(zdt.to_string(), "1968-02-01T23:15:00-00:45[Africa/Monrovia]");
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    ///
    /// And indeed, notice that parsing uses this same kind of offset equality
    /// to permit zoned datetimes whose offsets would be equivalent after
    /// rounding:
    ///
    /// ```
    /// use jiff::{tz::Offset, Zoned};
    ///
    /// let zdt: Zoned = "1968-02-01T23:15:00-00:45[Africa/Monrovia]".parse()?;
    /// // As above, notice that even though we parsed `-00:45` as the
    /// // offset, the actual offset of our zoned datetime is the correct
    /// // one from the time zone.
    /// assert_eq!(zdt.offset(), Offset::from_seconds(-(44 * 60 + 30)).unwrap());
    /// // And similarly, re-serializing it results in rounding the offset
    /// // again for compatibility with RFC 3339 and RFC 9557.
    /// assert_eq!(zdt.to_string(), "1968-02-01T23:15:00-00:45[Africa/Monrovia]");
    ///
    /// // And we also support parsing the actual fractional minute offset
    /// // as well:
    /// let zdt: Zoned = "1968-02-01T23:15:00-00:44:30[Africa/Monrovia]".parse()?;
    /// assert_eq!(zdt.offset(), Offset::from_seconds(-(44 * 60 + 30)).unwrap());
    /// assert_eq!(zdt.to_string(), "1968-02-01T23:15:00-00:45[Africa/Monrovia]");
    ///
    /// # Ok::<(), Box<dyn std::error::Error>>(())
    /// ```
    pub fn resolve_with<F>(
        self,
        dt: civil::DateTime,
        offset: Offset,
        tz: TimeZone,
        is_equal: F,
    ) -> Result<AmbiguousZoned, Error>
    where
        F: FnMut(Offset, Offset) -> bool,
    {
        match self {
            // In this case, we ignore any TZ annotation (although still
            // require that it exists) and always use the provided offset.
            OffsetConflict::AlwaysOffset => {
                let kind = AmbiguousOffset::Unambiguous { offset };
                Ok(AmbiguousTimestamp::new(dt, kind).into_ambiguous_zoned(tz))
            }
            // In this case, we ignore any provided offset and always use the
            // time zone annotation.
            OffsetConflict::AlwaysTimeZone => Ok(tz.into_ambiguous_zoned(dt)),
            // In this case, we use the offset if it's correct, but otherwise
            // fall back to the time zone annotation if it's not.
            OffsetConflict::PreferOffset => Ok(
                OffsetConflict::resolve_via_prefer(dt, offset, tz, is_equal),
            ),
            // In this case, if the offset isn't possible for the provided time
            // zone annotation, then we return an error.
            OffsetConflict::Reject => {
                OffsetConflict::resolve_via_reject(dt, offset, tz, is_equal)
            }
        }
    }

    /// Given a parsed datetime, a parsed offset and a parsed time zone, this
    /// attempts to resolve the datetime to a particular instant based on the
    /// 'prefer' strategy.
    ///
    /// In the 'prefer' strategy, we prefer to use the parsed offset to resolve
    /// any ambiguity in the parsed datetime and time zone, but only if the
    /// parsed offset is valid for the parsed datetime and time zone. If the
    /// parsed offset isn't valid, then it is ignored. In the case where it is
    /// ignored, it is possible for an ambiguous instant to be returned.
    fn resolve_via_prefer(
        dt: civil::DateTime,
        given: Offset,
        tz: TimeZone,
        mut is_equal: impl FnMut(Offset, Offset) -> bool,
    ) -> AmbiguousZoned {
        use crate::tz::AmbiguousOffset::*;

        let amb = tz.to_ambiguous_timestamp(dt);
        match amb.offset() {
            // We only look for folds because we consider all offsets for gaps
            // to be invalid. Which is consistent with how they're treated as
            // `OffsetConflict::Reject`. Thus, like any other invalid offset,
            // we fallback to disambiguation (which is handled by the caller).
            Fold { before, after }
                if is_equal(given, before) || is_equal(given, after) =>
            {
                let kind = Unambiguous { offset: given };
                AmbiguousTimestamp::new(dt, kind)
            }
            _ => amb,
        }
        .into_ambiguous_zoned(tz)
    }

    /// Given a parsed datetime, a parsed offset and a parsed time zone, this
    /// attempts to resolve the datetime to a particular instant based on the
    /// 'reject' strategy.
    ///
    /// That is, if the offset is not possibly valid for the given datetime and
    /// time zone, then this returns an error.
    ///
    /// This guarantees that on success, an unambiguous timestamp is returned.
    /// This occurs because if the datetime is ambiguous for the given time
    /// zone, then the parsed offset either matches one of the possible offsets
    /// (and thus provides an unambiguous choice), or it doesn't and an error
    /// is returned.
    fn resolve_via_reject(
        dt: civil::DateTime,
        given: Offset,
        tz: TimeZone,
        mut is_equal: impl FnMut(Offset, Offset) -> bool,
    ) -> Result<AmbiguousZoned, Error> {
        use crate::tz::AmbiguousOffset::*;

        let amb = tz.to_ambiguous_timestamp(dt);
        match amb.offset() {
            Unambiguous { offset } if !is_equal(given, offset) => Err(err!(
                "datetime {dt} could not resolve to a timestamp since \
                 'reject' conflict resolution was chosen, and because \
                 datetime has offset {given}, but the time zone {tzname} for \
                 the given datetime unambiguously has offset {offset}",
                tzname = tz.diagnostic_name(),
            )),
            Unambiguous { .. } => Ok(amb.into_ambiguous_zoned(tz)),
            Gap { before, after } => {
                // In `jiff 0.1`, we reported an error when we found a gap
                // where neither offset matched what was given. But now we
                // report an error whenever we find a gap, as we consider
                // all offsets to be invalid for the gap. This now matches
                // Temporal's behavior which I think is more consistent. And in
                // particular, this makes it more consistent with the behavior
                // of `PreferOffset` when a gap is found (which was also
                // changed to treat all offsets in a gap as invalid).
                //
                // Ref: https://github.com/tc39/proposal-temporal/issues/2892
                Err(err!(
                    "datetime {dt} could not resolve to timestamp \
                     since 'reject' conflict resolution was chosen, and \
                     because datetime has offset {given}, but the time \
                     zone {tzname} for the given datetime falls in a gap \
                     (between offsets {before} and {after}), and all \
                     offsets for a gap are regarded as invalid",
                    tzname = tz.diagnostic_name(),
                ))
            }
            Fold { before, after }
                if !is_equal(given, before) && !is_equal(given, after) =>
            {
                Err(err!(
                    "datetime {dt} could not resolve to timestamp \
                     since 'reject' conflict resolution was chosen, and \
                     because datetime has offset {given}, but the time \
                     zone {tzname} for the given datetime falls in a fold \
                     between offsets {before} and {after}, neither of which \
                     match the offset",
                    tzname = tz.diagnostic_name(),
                ))
            }
            Fold { .. } => {
                let kind = Unambiguous { offset: given };
                Ok(AmbiguousTimestamp::new(dt, kind).into_ambiguous_zoned(tz))
            }
        }
    }
}

fn timestamp_to_datetime_zulu(
    timestamp: Timestamp,
    offset: Offset,
) -> civil::DateTime {
    #[cfg(not(debug_assertions))]
    {
        let (y, mo, d, h, m, s, ns) = common::timestamp_to_datetime_zulu(
            timestamp.as_second(),
            timestamp.subsec_nanosecond(),
            offset.seconds(),
        );
        let date = civil::Date::new_ranged_unchecked(
            t::Year { val: y },
            t::Month { val: mo },
            t::Day { val: d },
        );
        let time = civil::Time::new_ranged_unchecked(
            t::Hour { val: h },
            t::Minute { val: m },
            t::Second { val: s },
            t::SubsecNanosecond { val: ns },
        );
        civil::DateTime::from_parts(date, time)
    }
    #[cfg(debug_assertions)]
    {
        let secs = timestamp.as_second_ranged();
        let subsec = timestamp.subsec_nanosecond_ranged();
        let offset = offset.seconds_ranged();

        let (y, mo, d, h, m, s, ns) = common::timestamp_to_datetime_zulu(
            secs.val, subsec.val, offset.val,
        );
        let (min_y, min_mo, min_d, min_h, min_m, min_s, min_ns) =
            common::timestamp_to_datetime_zulu(
                secs.min,
                // This is tricky, but if we have a minimal number of seconds,
                // then the minimum possible nanosecond value is actually 0.
                // So we clamp it in this case. (This encodes the invariant
                // enforced by `Timestamp::new`.)
                if secs.min == t::UnixSeconds::MIN_REPR {
                    0
                } else {
                    subsec.min
                },
                offset.min,
            );
        let (max_y, max_mo, max_d, max_h, max_m, max_s, max_ns) =
            common::timestamp_to_datetime_zulu(
                secs.max, subsec.max, offset.max,
            );
        let date = civil::Date::new_ranged_unchecked(
            t::Year { val: y, min: min_y, max: max_y },
            t::Month { val: mo, min: min_mo, max: max_mo },
            t::Day { val: d, min: min_d, max: max_d },
        );
        let time = civil::Time::new_ranged_unchecked(
            t::Hour { val: h, min: min_h, max: max_h },
            t::Minute { val: m, min: min_m, max: max_m },
            t::Second { val: s, min: min_s, max: max_s },
            t::SubsecNanosecond { val: ns, min: min_ns, max: max_ns },
        );
        civil::DateTime::from_parts(date, time)
    }
}

fn datetime_zulu_to_timestamp(
    dt: civil::DateTime,
    offset: Offset,
) -> Result<Timestamp, Error> {
    #[cfg(not(debug_assertions))]
    {
        let (secs, subsec) = common::datetime_zulu_to_timestamp(
            dt.year(),
            dt.month(),
            dt.day(),
            dt.hour(),
            dt.minute(),
            dt.second(),
            dt.subsec_nanosecond(),
            offset.seconds(),
        );
        let second = t::UnixSeconds::try_new("unix-seconds", secs)
            .with_context(|| {
                err!(
                    "converting {dt} with offset {offset} to timestamp \
                     overflowed (second={secs}, nanosecond={subsec})",
                )
            })?;
        let nanosecond = t::FractionalNanosecond::new_unchecked(subsec);
        Ok(Timestamp::new_ranged_unchecked(second, nanosecond))
    }
    #[cfg(debug_assertions)]
    {
        let (secs, subsec) = common::datetime_zulu_to_timestamp(
            dt.date().year_ranged().val,
            dt.date().month_ranged().val,
            dt.date().day_ranged().val,
            dt.time().hour_ranged().val,
            dt.time().minute_ranged().val,
            dt.time().second_ranged().val,
            dt.time().subsec_nanosecond_ranged().val,
            offset.seconds_ranged().val,
        );
        let (min_secs, min_subsec) = common::datetime_zulu_to_timestamp(
            dt.date().year_ranged().min,
            dt.date().month_ranged().min,
            dt.date().day_ranged().min,
            dt.time().hour_ranged().min,
            dt.time().minute_ranged().min,
            dt.time().second_ranged().min,
            dt.time().subsec_nanosecond_ranged().min,
            offset.seconds_ranged().min,
        );
        let (max_secs, max_subsec) = common::datetime_zulu_to_timestamp(
            dt.date().year_ranged().max,
            dt.date().month_ranged().max,
            dt.date().day_ranged().max,
            dt.time().hour_ranged().max,
            dt.time().minute_ranged().max,
            dt.time().second_ranged().max,
            dt.time().subsec_nanosecond_ranged().max,
            offset.seconds_ranged().max,
        );

        let mut second = t::UnixSeconds::try_new("unix-seconds", secs)
            .with_context(|| {
                err!(
                    "converting {dt} with offset {offset} to timestamp \
                     overflowed (second={secs}, nanosecond={subsec})",
                )
            })?;
        second.min =
            min_secs.clamp(t::UnixSeconds::MIN_REPR, t::UnixSeconds::MAX_REPR);
        second.max =
            max_secs.clamp(t::UnixSeconds::MIN_REPR, t::UnixSeconds::MAX_REPR);

        let nanosecond = t::FractionalNanosecond {
            val: subsec,
            min: min_subsec,
            max: max_subsec,
        };
        Ok(Timestamp::new_ranged_unchecked(second, nanosecond))
    }
}