rand/distr/
uniform_int.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
// Copyright 2018-2020 Developers of the Rand project.
// Copyright 2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! `UniformInt` implementation

use super::{Error, SampleBorrow, SampleUniform, UniformSampler};
use crate::distr::utils::WideningMultiply;
#[cfg(feature = "simd_support")]
use crate::distr::{Distribution, StandardUniform};
use crate::Rng;

#[cfg(feature = "simd_support")]
use core::simd::prelude::*;
#[cfg(feature = "simd_support")]
use core::simd::{LaneCount, SupportedLaneCount};

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

/// The back-end implementing [`UniformSampler`] for integer types.
///
/// Unless you are implementing [`UniformSampler`] for your own type, this type
/// should not be used directly, use [`Uniform`] instead.
///
/// # Implementation notes
///
/// For simplicity, we use the same generic struct `UniformInt<X>` for all
/// integer types `X`. This gives us only one field type, `X`; to store unsigned
/// values of this size, we take use the fact that these conversions are no-ops.
///
/// For a closed range, the number of possible numbers we should generate is
/// `range = (high - low + 1)`. To avoid bias, we must ensure that the size of
/// our sample space, `zone`, is a multiple of `range`; other values must be
/// rejected (by replacing with a new random sample).
///
/// As a special case, we use `range = 0` to represent the full range of the
/// result type (i.e. for `new_inclusive($ty::MIN, $ty::MAX)`).
///
/// The optimum `zone` is the largest product of `range` which fits in our
/// (unsigned) target type. We calculate this by calculating how many numbers we
/// must reject: `reject = (MAX + 1) % range = (MAX - range + 1) % range`. Any (large)
/// product of `range` will suffice, thus in `sample_single` we multiply by a
/// power of 2 via bit-shifting (faster but may cause more rejections).
///
/// The smallest integer PRNGs generate is `u32`. For 8- and 16-bit outputs we
/// use `u32` for our `zone` and samples (because it's not slower and because
/// it reduces the chance of having to reject a sample). In this case we cannot
/// store `zone` in the target type since it is too large, however we know
/// `ints_to_reject < range <= $uty::MAX`.
///
/// An alternative to using a modulus is widening multiply: After a widening
/// multiply by `range`, the result is in the high word. Then comparing the low
/// word against `zone` makes sure our distribution is uniform.
///
/// # Bias
///
/// Unless the `unbiased` feature flag is used, outputs may have a small bias.
/// In the worst case, bias affects 1 in `2^n` samples where n is
/// 56 (`i8` and `u8`), 48 (`i16` and `u16`), 96 (`i32` and `u32`), 64 (`i64`
/// and `u64`), 128 (`i128` and `u128`).
///
/// [`Uniform`]: super::Uniform
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct UniformInt<X> {
    pub(super) low: X,
    pub(super) range: X,
    thresh: X, // effectively 2.pow(max(64, uty_bits)) % range
}

macro_rules! uniform_int_impl {
    ($ty:ty, $uty:ty, $sample_ty:ident) => {
        impl SampleUniform for $ty {
            type Sampler = UniformInt<$ty>;
        }

        impl UniformSampler for UniformInt<$ty> {
            // We play free and fast with unsigned vs signed here
            // (when $ty is signed), but that's fine, since the
            // contract of this macro is for $ty and $uty to be
            // "bit-equal", so casting between them is a no-op.

            type X = $ty;

            #[inline] // if the range is constant, this helps LLVM to do the
                      // calculations at compile-time.
            fn new<B1, B2>(low_b: B1, high_b: B2) -> Result<Self, Error>
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                if !(low < high) {
                    return Err(Error::EmptyRange);
                }
                UniformSampler::new_inclusive(low, high - 1)
            }

            #[inline] // if the range is constant, this helps LLVM to do the
                      // calculations at compile-time.
            fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Result<Self, Error>
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                if !(low <= high) {
                    return Err(Error::EmptyRange);
                }

                let range = high.wrapping_sub(low).wrapping_add(1) as $uty;
                let thresh = if range > 0 {
                    let range = $sample_ty::from(range);
                    (range.wrapping_neg() % range)
                } else {
                    0
                };

                Ok(UniformInt {
                    low,
                    range: range as $ty,           // type: $uty
                    thresh: thresh as $uty as $ty, // type: $sample_ty
                })
            }

            /// Sample from distribution, Lemire's method, unbiased
            #[inline]
            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
                let range = self.range as $uty as $sample_ty;
                if range == 0 {
                    return rng.random();
                }

                let thresh = self.thresh as $uty as $sample_ty;
                let hi = loop {
                    let (hi, lo) = rng.random::<$sample_ty>().wmul(range);
                    if lo >= thresh {
                        break hi;
                    }
                };
                self.low.wrapping_add(hi as $ty)
            }

            #[inline]
            fn sample_single<R: Rng + ?Sized, B1, B2>(
                low_b: B1,
                high_b: B2,
                rng: &mut R,
            ) -> Result<Self::X, Error>
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                if !(low < high) {
                    return Err(Error::EmptyRange);
                }
                Self::sample_single_inclusive(low, high - 1, rng)
            }

            /// Sample single value, Canon's method, biased
            ///
            /// In the worst case, bias affects 1 in `2^n` samples where n is
            /// 56 (`i8`), 48 (`i16`), 96 (`i32`), 64 (`i64`), 128 (`i128`).
            #[cfg(not(feature = "unbiased"))]
            #[inline]
            fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(
                low_b: B1,
                high_b: B2,
                rng: &mut R,
            ) -> Result<Self::X, Error>
            where
                B1: SampleBorrow<Self::X> + Sized,
                B2: SampleBorrow<Self::X> + Sized,
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                if !(low <= high) {
                    return Err(Error::EmptyRange);
                }
                let range = high.wrapping_sub(low).wrapping_add(1) as $uty as $sample_ty;
                if range == 0 {
                    // Range is MAX+1 (unrepresentable), so we need a special case
                    return Ok(rng.random());
                }

                // generate a sample using a sensible integer type
                let (mut result, lo_order) = rng.random::<$sample_ty>().wmul(range);

                // if the sample is biased...
                if lo_order > range.wrapping_neg() {
                    // ...generate a new sample to reduce bias...
                    let (new_hi_order, _) = (rng.random::<$sample_ty>()).wmul(range as $sample_ty);
                    // ... incrementing result on overflow
                    let is_overflow = lo_order.checked_add(new_hi_order as $sample_ty).is_none();
                    result += is_overflow as $sample_ty;
                }

                Ok(low.wrapping_add(result as $ty))
            }

            /// Sample single value, Canon's method, unbiased
            #[cfg(feature = "unbiased")]
            #[inline]
            fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(
                low_b: B1,
                high_b: B2,
                rng: &mut R,
            ) -> Result<Self::X, Error>
            where
                B1: SampleBorrow<$ty> + Sized,
                B2: SampleBorrow<$ty> + Sized,
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                if !(low <= high) {
                    return Err(Error::EmptyRange);
                }
                let range = high.wrapping_sub(low).wrapping_add(1) as $uty as $sample_ty;
                if range == 0 {
                    // Range is MAX+1 (unrepresentable), so we need a special case
                    return Ok(rng.random());
                }

                let (mut result, mut lo) = rng.random::<$sample_ty>().wmul(range);

                // In contrast to the biased sampler, we use a loop:
                while lo > range.wrapping_neg() {
                    let (new_hi, new_lo) = (rng.random::<$sample_ty>()).wmul(range);
                    match lo.checked_add(new_hi) {
                        Some(x) if x < $sample_ty::MAX => {
                            // Anything less than MAX: last term is 0
                            break;
                        }
                        None => {
                            // Overflow: last term is 1
                            result += 1;
                            break;
                        }
                        _ => {
                            // Unlikely case: must check next sample
                            lo = new_lo;
                            continue;
                        }
                    }
                }

                Ok(low.wrapping_add(result as $ty))
            }
        }
    };
}

uniform_int_impl! { i8, u8, u32 }
uniform_int_impl! { i16, u16, u32 }
uniform_int_impl! { i32, u32, u32 }
uniform_int_impl! { i64, u64, u64 }
uniform_int_impl! { i128, u128, u128 }
uniform_int_impl! { u8, u8, u32 }
uniform_int_impl! { u16, u16, u32 }
uniform_int_impl! { u32, u32, u32 }
uniform_int_impl! { u64, u64, u64 }
uniform_int_impl! { u128, u128, u128 }

#[cfg(feature = "simd_support")]
macro_rules! uniform_simd_int_impl {
    ($ty:ident, $unsigned:ident) => {
        // The "pick the largest zone that can fit in an `u32`" optimization
        // is less useful here. Multiple lanes complicate things, we don't
        // know the PRNG's minimal output size, and casting to a larger vector
        // is generally a bad idea for SIMD performance. The user can still
        // implement it manually.

        #[cfg(feature = "simd_support")]
        impl<const LANES: usize> SampleUniform for Simd<$ty, LANES>
        where
            LaneCount<LANES>: SupportedLaneCount,
            Simd<$unsigned, LANES>:
                WideningMultiply<Output = (Simd<$unsigned, LANES>, Simd<$unsigned, LANES>)>,
            StandardUniform: Distribution<Simd<$unsigned, LANES>>,
        {
            type Sampler = UniformInt<Simd<$ty, LANES>>;
        }

        #[cfg(feature = "simd_support")]
        impl<const LANES: usize> UniformSampler for UniformInt<Simd<$ty, LANES>>
        where
            LaneCount<LANES>: SupportedLaneCount,
            Simd<$unsigned, LANES>:
                WideningMultiply<Output = (Simd<$unsigned, LANES>, Simd<$unsigned, LANES>)>,
            StandardUniform: Distribution<Simd<$unsigned, LANES>>,
        {
            type X = Simd<$ty, LANES>;

            #[inline] // if the range is constant, this helps LLVM to do the
                      // calculations at compile-time.
            fn new<B1, B2>(low_b: B1, high_b: B2) -> Result<Self, Error>
                where B1: SampleBorrow<Self::X> + Sized,
                      B2: SampleBorrow<Self::X> + Sized
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                if !(low.simd_lt(high).all()) {
                    return Err(Error::EmptyRange);
                }
                UniformSampler::new_inclusive(low, high - Simd::splat(1))
            }

            #[inline] // if the range is constant, this helps LLVM to do the
                      // calculations at compile-time.
            fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Result<Self, Error>
                where B1: SampleBorrow<Self::X> + Sized,
                      B2: SampleBorrow<Self::X> + Sized
            {
                let low = *low_b.borrow();
                let high = *high_b.borrow();
                if !(low.simd_le(high).all()) {
                    return Err(Error::EmptyRange);
                }

                // NOTE: all `Simd` operations are inherently wrapping,
                //       see https://doc.rust-lang.org/std/simd/struct.Simd.html
                let range: Simd<$unsigned, LANES> = ((high - low) + Simd::splat(1)).cast();

                // We must avoid divide-by-zero by using 0 % 1 == 0.
                let not_full_range = range.simd_gt(Simd::splat(0));
                let modulo = not_full_range.select(range, Simd::splat(1));
                let ints_to_reject = range.wrapping_neg() % modulo;

                Ok(UniformInt {
                    low,
                    // These are really $unsigned values, but store as $ty:
                    range: range.cast(),
                    thresh: ints_to_reject.cast(),
                })
            }

            fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Self::X {
                let range: Simd<$unsigned, LANES> = self.range.cast();
                let thresh: Simd<$unsigned, LANES> = self.thresh.cast();

                // This might seem very slow, generating a whole new
                // SIMD vector for every sample rejection. For most uses
                // though, the chance of rejection is small and provides good
                // general performance. With multiple lanes, that chance is
                // multiplied. To mitigate this, we replace only the lanes of
                // the vector which fail, iteratively reducing the chance of
                // rejection. The replacement method does however add a little
                // overhead. Benchmarking or calculating probabilities might
                // reveal contexts where this replacement method is slower.
                let mut v: Simd<$unsigned, LANES> = rng.random();
                loop {
                    let (hi, lo) = v.wmul(range);
                    let mask = lo.simd_ge(thresh);
                    if mask.all() {
                        let hi: Simd<$ty, LANES> = hi.cast();
                        // wrapping addition
                        let result = self.low + hi;
                        // `select` here compiles to a blend operation
                        // When `range.eq(0).none()` the compare and blend
                        // operations are avoided.
                        let v: Simd<$ty, LANES> = v.cast();
                        return range.simd_gt(Simd::splat(0)).select(result, v);
                    }
                    // Replace only the failing lanes
                    v = mask.select(v, rng.random());
                }
            }
        }
    };

    // bulk implementation
    ($(($unsigned:ident, $signed:ident)),+) => {
        $(
            uniform_simd_int_impl!($unsigned, $unsigned);
            uniform_simd_int_impl!($signed, $unsigned);
        )+
    };
}

#[cfg(feature = "simd_support")]
uniform_simd_int_impl! { (u8, i8), (u16, i16), (u32, i32), (u64, i64) }

/// The back-end implementing [`UniformSampler`] for `usize`.
///
/// # Implementation notes
///
/// Sampling a `usize` value is usually used in relation to the length of an
/// array or other memory structure, thus it is reasonable to assume that the
/// vast majority of use-cases will have a maximum size under [`u32::MAX`].
/// In part to optimise for this use-case, but mostly to ensure that results
/// are portable across 32-bit and 64-bit architectures (as far as is possible),
/// this implementation will use 32-bit sampling when possible.
#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct UniformUsize {
    low: usize,
    range: usize,
    thresh: usize,
    #[cfg(target_pointer_width = "64")]
    mode64: bool,
}

#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
impl SampleUniform for usize {
    type Sampler = UniformUsize;
}

#[cfg(any(target_pointer_width = "32", target_pointer_width = "64"))]
impl UniformSampler for UniformUsize {
    type X = usize;

    #[inline] // if the range is constant, this helps LLVM to do the
              // calculations at compile-time.
    fn new<B1, B2>(low_b: B1, high_b: B2) -> Result<Self, Error>
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let low = *low_b.borrow();
        let high = *high_b.borrow();
        if !(low < high) {
            return Err(Error::EmptyRange);
        }

        UniformSampler::new_inclusive(low, high - 1)
    }

    #[inline] // if the range is constant, this helps LLVM to do the
              // calculations at compile-time.
    fn new_inclusive<B1, B2>(low_b: B1, high_b: B2) -> Result<Self, Error>
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let low = *low_b.borrow();
        let high = *high_b.borrow();
        if !(low <= high) {
            return Err(Error::EmptyRange);
        }

        #[cfg(target_pointer_width = "64")]
        let mode64 = high > (u32::MAX as usize);
        #[cfg(target_pointer_width = "32")]
        let mode64 = false;

        let (range, thresh);
        if cfg!(target_pointer_width = "64") && !mode64 {
            let range32 = (high as u32).wrapping_sub(low as u32).wrapping_add(1);
            range = range32 as usize;
            thresh = if range32 > 0 {
                (range32.wrapping_neg() % range32) as usize
            } else {
                0
            };
        } else {
            range = high.wrapping_sub(low).wrapping_add(1);
            thresh = if range > 0 {
                range.wrapping_neg() % range
            } else {
                0
            };
        }

        Ok(UniformUsize {
            low,
            range,
            thresh,
            #[cfg(target_pointer_width = "64")]
            mode64,
        })
    }

    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> usize {
        #[cfg(target_pointer_width = "32")]
        let mode32 = true;
        #[cfg(target_pointer_width = "64")]
        let mode32 = !self.mode64;

        if mode32 {
            let range = self.range as u32;
            if range == 0 {
                return rng.random::<u32>() as usize;
            }

            let thresh = self.thresh as u32;
            let hi = loop {
                let (hi, lo) = rng.random::<u32>().wmul(range);
                if lo >= thresh {
                    break hi;
                }
            };
            self.low.wrapping_add(hi as usize)
        } else {
            let range = self.range as u64;
            if range == 0 {
                return rng.random::<u64>() as usize;
            }

            let thresh = self.thresh as u64;
            let hi = loop {
                let (hi, lo) = rng.random::<u64>().wmul(range);
                if lo >= thresh {
                    break hi;
                }
            };
            self.low.wrapping_add(hi as usize)
        }
    }

    #[inline]
    fn sample_single<R: Rng + ?Sized, B1, B2>(
        low_b: B1,
        high_b: B2,
        rng: &mut R,
    ) -> Result<Self::X, Error>
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let low = *low_b.borrow();
        let high = *high_b.borrow();
        if !(low < high) {
            return Err(Error::EmptyRange);
        }

        if cfg!(target_pointer_width = "64") && high > (u32::MAX as usize) {
            return UniformInt::<u64>::sample_single(low as u64, high as u64, rng)
                .map(|x| x as usize);
        }

        UniformInt::<u32>::sample_single(low as u32, high as u32, rng).map(|x| x as usize)
    }

    #[inline]
    fn sample_single_inclusive<R: Rng + ?Sized, B1, B2>(
        low_b: B1,
        high_b: B2,
        rng: &mut R,
    ) -> Result<Self::X, Error>
    where
        B1: SampleBorrow<Self::X> + Sized,
        B2: SampleBorrow<Self::X> + Sized,
    {
        let low = *low_b.borrow();
        let high = *high_b.borrow();
        if !(low <= high) {
            return Err(Error::EmptyRange);
        }

        if cfg!(target_pointer_width = "64") && high > (u32::MAX as usize) {
            return UniformInt::<u64>::sample_single_inclusive(low as u64, high as u64, rng)
                .map(|x| x as usize);
        }

        UniformInt::<u32>::sample_single_inclusive(low as u32, high as u32, rng).map(|x| x as usize)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::distr::{Distribution, Uniform};
    use core::fmt::Debug;
    use core::ops::Add;

    #[test]
    fn test_uniform_bad_limits_equal_int() {
        assert_eq!(Uniform::new(10, 10), Err(Error::EmptyRange));
    }

    #[test]
    fn test_uniform_good_limits_equal_int() {
        let mut rng = crate::test::rng(804);
        let dist = Uniform::new_inclusive(10, 10).unwrap();
        for _ in 0..20 {
            assert_eq!(rng.sample(dist), 10);
        }
    }

    #[test]
    fn test_uniform_bad_limits_flipped_int() {
        assert_eq!(Uniform::new(10, 5), Err(Error::EmptyRange));
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_integers() {
        let mut rng = crate::test::rng(251);
        macro_rules! t {
            ($ty:ident, $v:expr, $le:expr, $lt:expr) => {{
                for &(low, high) in $v.iter() {
                    let my_uniform = Uniform::new(low, high).unwrap();
                    for _ in 0..1000 {
                        let v: $ty = rng.sample(my_uniform);
                        assert!($le(low, v) && $lt(v, high));
                    }

                    let my_uniform = Uniform::new_inclusive(low, high).unwrap();
                    for _ in 0..1000 {
                        let v: $ty = rng.sample(my_uniform);
                        assert!($le(low, v) && $le(v, high));
                    }

                    let my_uniform = Uniform::new(&low, high).unwrap();
                    for _ in 0..1000 {
                        let v: $ty = rng.sample(my_uniform);
                        assert!($le(low, v) && $lt(v, high));
                    }

                    let my_uniform = Uniform::new_inclusive(&low, &high).unwrap();
                    for _ in 0..1000 {
                        let v: $ty = rng.sample(my_uniform);
                        assert!($le(low, v) && $le(v, high));
                    }

                    for _ in 0..1000 {
                        let v = <$ty as SampleUniform>::Sampler::sample_single(low, high, &mut rng).unwrap();
                        assert!($le(low, v) && $lt(v, high));
                    }

                    for _ in 0..1000 {
                        let v = <$ty as SampleUniform>::Sampler::sample_single_inclusive(low, high, &mut rng).unwrap();
                        assert!($le(low, v) && $le(v, high));
                    }
                }
            }};

            // scalar bulk
            ($($ty:ident),*) => {{
                $(t!(
                    $ty,
                    [(0, 10), (10, 127), ($ty::MIN, $ty::MAX)],
                    |x, y| x <= y,
                    |x, y| x < y
                );)*
            }};

            // simd bulk
            ($($ty:ident),* => $scalar:ident) => {{
                $(t!(
                    $ty,
                    [
                        ($ty::splat(0), $ty::splat(10)),
                        ($ty::splat(10), $ty::splat(127)),
                        ($ty::splat($scalar::MIN), $ty::splat($scalar::MAX)),
                    ],
                    |x: $ty, y| x.simd_le(y).all(),
                    |x: $ty, y| x.simd_lt(y).all()
                );)*
            }};
        }
        t!(i8, i16, i32, i64, i128, u8, u16, u32, u64, usize, u128);

        #[cfg(feature = "simd_support")]
        {
            t!(u8x4, u8x8, u8x16, u8x32, u8x64 => u8);
            t!(i8x4, i8x8, i8x16, i8x32, i8x64 => i8);
            t!(u16x2, u16x4, u16x8, u16x16, u16x32 => u16);
            t!(i16x2, i16x4, i16x8, i16x16, i16x32 => i16);
            t!(u32x2, u32x4, u32x8, u32x16 => u32);
            t!(i32x2, i32x4, i32x8, i32x16 => i32);
            t!(u64x2, u64x4, u64x8 => u64);
            t!(i64x2, i64x4, i64x8 => i64);
        }
    }

    #[test]
    fn test_uniform_from_std_range() {
        let r = Uniform::try_from(2u32..7).unwrap();
        assert_eq!(r.0.low, 2);
        assert_eq!(r.0.range, 5);
    }

    #[test]
    fn test_uniform_from_std_range_bad_limits() {
        #![allow(clippy::reversed_empty_ranges)]
        assert!(Uniform::try_from(100..10).is_err());
        assert!(Uniform::try_from(100..100).is_err());
    }

    #[test]
    fn test_uniform_from_std_range_inclusive() {
        let r = Uniform::try_from(2u32..=6).unwrap();
        assert_eq!(r.0.low, 2);
        assert_eq!(r.0.range, 5);
    }

    #[test]
    fn test_uniform_from_std_range_inclusive_bad_limits() {
        #![allow(clippy::reversed_empty_ranges)]
        assert!(Uniform::try_from(100..=10).is_err());
        assert!(Uniform::try_from(100..=99).is_err());
    }

    #[test]
    fn value_stability() {
        fn test_samples<T: SampleUniform + Copy + Debug + PartialEq + Add<T>>(
            lb: T,
            ub: T,
            ub_excl: T,
            expected: &[T],
        ) where
            Uniform<T>: Distribution<T>,
        {
            let mut rng = crate::test::rng(897);
            let mut buf = [lb; 6];

            for x in &mut buf[0..3] {
                *x = T::Sampler::sample_single_inclusive(lb, ub, &mut rng).unwrap();
            }

            let distr = Uniform::new_inclusive(lb, ub).unwrap();
            for x in &mut buf[3..6] {
                *x = rng.sample(&distr);
            }
            assert_eq!(&buf, expected);

            let mut rng = crate::test::rng(897);

            for x in &mut buf[0..3] {
                *x = T::Sampler::sample_single(lb, ub_excl, &mut rng).unwrap();
            }

            let distr = Uniform::new(lb, ub_excl).unwrap();
            for x in &mut buf[3..6] {
                *x = rng.sample(&distr);
            }
            assert_eq!(&buf, expected);
        }

        test_samples(-105i8, 111, 112, &[-99, -48, 107, 72, -19, 56]);
        test_samples(2i16, 1352, 1353, &[43, 361, 1325, 1109, 539, 1005]);
        test_samples(
            -313853i32,
            13513,
            13514,
            &[-303803, -226673, 6912, -45605, -183505, -70668],
        );
        test_samples(
            131521i64,
            6542165,
            6542166,
            &[1838724, 5384489, 4893692, 3712948, 3951509, 4094926],
        );
        test_samples(
            -0x8000_0000_0000_0000_0000_0000_0000_0000i128,
            -1,
            0,
            &[
                -30725222750250982319765550926688025855,
                -75088619368053423329503924805178012357,
                -64950748766625548510467638647674468829,
                -41794017901603587121582892414659436495,
                -63623852319608406524605295913876414006,
                -17404679390297612013597359206379189023,
            ],
        );
        test_samples(11u8, 218, 219, &[17, 66, 214, 181, 93, 165]);
        test_samples(11u16, 218, 219, &[17, 66, 214, 181, 93, 165]);
        test_samples(11u32, 218, 219, &[17, 66, 214, 181, 93, 165]);
        test_samples(11u64, 218, 219, &[66, 181, 165, 127, 134, 139]);
        test_samples(11u128, 218, 219, &[181, 127, 139, 167, 141, 197]);
        test_samples(11usize, 218, 219, &[17, 66, 214, 181, 93, 165]);

        #[cfg(feature = "simd_support")]
        {
            let lb = Simd::from([11u8, 0, 128, 127]);
            let ub = Simd::from([218, 254, 254, 254]);
            let ub_excl = ub + Simd::splat(1);
            test_samples(
                lb,
                ub,
                ub_excl,
                &[
                    Simd::from([13, 5, 237, 130]),
                    Simd::from([126, 186, 149, 161]),
                    Simd::from([103, 86, 234, 252]),
                    Simd::from([35, 18, 225, 231]),
                    Simd::from([106, 153, 246, 177]),
                    Simd::from([195, 168, 149, 222]),
                ],
            );
        }
    }
}