rand/seq/
slice.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
// Copyright 2018-2023 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! `IndexedRandom`, `IndexedMutRandom`, `SliceRandom`

use super::increasing_uniform::IncreasingUniform;
use super::index;
#[cfg(feature = "alloc")]
use crate::distr::uniform::{SampleBorrow, SampleUniform};
#[cfg(feature = "alloc")]
use crate::distr::weighted::{Error as WeightError, Weight};
use crate::Rng;
use core::ops::{Index, IndexMut};

/// Extension trait on indexable lists, providing random sampling methods.
///
/// This trait is implemented on `[T]` slice types. Other types supporting
/// [`std::ops::Index<usize>`] may implement this (only [`Self::len`] must be
/// specified).
pub trait IndexedRandom: Index<usize> {
    /// The length
    fn len(&self) -> usize;

    /// True when the length is zero
    #[inline]
    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Uniformly sample one element
    ///
    /// Returns a reference to one uniformly-sampled random element of
    /// the slice, or `None` if the slice is empty.
    ///
    /// For slices, complexity is `O(1)`.
    ///
    /// # Example
    ///
    /// ```
    /// use rand::seq::IndexedRandom;
    ///
    /// let choices = [1, 2, 4, 8, 16, 32];
    /// let mut rng = rand::rng();
    /// println!("{:?}", choices.choose(&mut rng));
    /// assert_eq!(choices[..0].choose(&mut rng), None);
    /// ```
    fn choose<R>(&self, rng: &mut R) -> Option<&Self::Output>
    where
        R: Rng + ?Sized,
    {
        if self.is_empty() {
            None
        } else {
            Some(&self[rng.random_range(..self.len())])
        }
    }

    /// Uniformly sample `amount` distinct elements from self
    ///
    /// Chooses `amount` elements from the slice at random, without repetition,
    /// and in random order. The returned iterator is appropriate both for
    /// collection into a `Vec` and filling an existing buffer (see example).
    ///
    /// In case this API is not sufficiently flexible, use [`index::sample`].
    ///
    /// For slices, complexity is the same as [`index::sample`].
    ///
    /// # Example
    /// ```
    /// use rand::seq::IndexedRandom;
    ///
    /// let mut rng = &mut rand::rng();
    /// let sample = "Hello, audience!".as_bytes();
    ///
    /// // collect the results into a vector:
    /// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
    ///
    /// // store in a buffer:
    /// let mut buf = [0u8; 5];
    /// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
    ///     *slot = *b;
    /// }
    /// ```
    #[cfg(feature = "alloc")]
    fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Output>
    where
        Self::Output: Sized,
        R: Rng + ?Sized,
    {
        let amount = core::cmp::min(amount, self.len());
        SliceChooseIter {
            slice: self,
            _phantom: Default::default(),
            indices: index::sample(rng, self.len(), amount).into_iter(),
        }
    }

    /// Uniformly sample a fixed-size array of distinct elements from self
    ///
    /// Chooses `N` elements from the slice at random, without repetition,
    /// and in random order.
    ///
    /// For slices, complexity is the same as [`index::sample_array`].
    ///
    /// # Example
    /// ```
    /// use rand::seq::IndexedRandom;
    ///
    /// let mut rng = &mut rand::rng();
    /// let sample = "Hello, audience!".as_bytes();
    ///
    /// let a: [u8; 3] = sample.choose_multiple_array(&mut rng).unwrap();
    /// ```
    fn choose_multiple_array<R, const N: usize>(&self, rng: &mut R) -> Option<[Self::Output; N]>
    where
        Self::Output: Clone + Sized,
        R: Rng + ?Sized,
    {
        let indices = index::sample_array(rng, self.len())?;
        Some(indices.map(|index| self[index].clone()))
    }

    /// Biased sampling for one element
    ///
    /// Returns a reference to one element of the slice, sampled according
    /// to the provided weights. Returns `None` only if the slice is empty.
    ///
    /// The specified function `weight` maps each item `x` to a relative
    /// likelihood `weight(x)`. The probability of each item being selected is
    /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
    ///
    /// For slices of length `n`, complexity is `O(n)`.
    /// For more information about the underlying algorithm,
    /// see the [`WeightedIndex`] distribution.
    ///
    /// See also [`choose_weighted_mut`].
    ///
    /// # Example
    ///
    /// ```
    /// use rand::prelude::*;
    ///
    /// let choices = [('a', 2), ('b', 1), ('c', 1), ('d', 0)];
    /// let mut rng = rand::rng();
    /// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c',
    /// // and 'd' will never be printed
    /// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
    /// ```
    /// [`choose`]: IndexedRandom::choose
    /// [`choose_weighted_mut`]: IndexedMutRandom::choose_weighted_mut
    /// [`WeightedIndex`]: crate::distr::weighted::WeightedIndex
    #[cfg(feature = "alloc")]
    fn choose_weighted<R, F, B, X>(
        &self,
        rng: &mut R,
        weight: F,
    ) -> Result<&Self::Output, WeightError>
    where
        R: Rng + ?Sized,
        F: Fn(&Self::Output) -> B,
        B: SampleBorrow<X>,
        X: SampleUniform + Weight + PartialOrd<X>,
    {
        use crate::distr::{weighted::WeightedIndex, Distribution};
        let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?;
        Ok(&self[distr.sample(rng)])
    }

    /// Biased sampling of `amount` distinct elements
    ///
    /// Similar to [`choose_multiple`], but where the likelihood of each element's
    /// inclusion in the output may be specified. The elements are returned in an
    /// arbitrary, unspecified order.
    ///
    /// The specified function `weight` maps each item `x` to a relative
    /// likelihood `weight(x)`. The probability of each item being selected is
    /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
    ///
    /// If all of the weights are equal, even if they are all zero, each element has
    /// an equal likelihood of being selected.
    ///
    /// This implementation uses `O(length + amount)` space and `O(length)` time
    /// if the "nightly" feature is enabled, or `O(length)` space and
    /// `O(length + amount * log length)` time otherwise.
    ///
    /// # Known issues
    ///
    /// The algorithm currently used to implement this method loses accuracy
    /// when small values are used for weights.
    /// See [#1476](https://github.com/rust-random/rand/issues/1476).
    ///
    /// # Example
    ///
    /// ```
    /// use rand::prelude::*;
    ///
    /// let choices = [('a', 2), ('b', 1), ('c', 1)];
    /// let mut rng = rand::rng();
    /// // First Draw * Second Draw = total odds
    /// // -----------------------
    /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order.
    /// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order.
    /// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order.
    /// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>());
    /// ```
    /// [`choose_multiple`]: IndexedRandom::choose_multiple
    // Note: this is feature-gated on std due to usage of f64::powf.
    // If necessary, we may use alloc+libm as an alternative (see PR #1089).
    #[cfg(feature = "std")]
    fn choose_multiple_weighted<R, F, X>(
        &self,
        rng: &mut R,
        amount: usize,
        weight: F,
    ) -> Result<SliceChooseIter<Self, Self::Output>, WeightError>
    where
        Self::Output: Sized,
        R: Rng + ?Sized,
        F: Fn(&Self::Output) -> X,
        X: Into<f64>,
    {
        let amount = core::cmp::min(amount, self.len());
        Ok(SliceChooseIter {
            slice: self,
            _phantom: Default::default(),
            indices: index::sample_weighted(
                rng,
                self.len(),
                |idx| weight(&self[idx]).into(),
                amount,
            )?
            .into_iter(),
        })
    }
}

/// Extension trait on indexable lists, providing random sampling methods.
///
/// This trait is implemented automatically for every type implementing
/// [`IndexedRandom`] and [`std::ops::IndexMut<usize>`].
pub trait IndexedMutRandom: IndexedRandom + IndexMut<usize> {
    /// Uniformly sample one element (mut)
    ///
    /// Returns a mutable reference to one uniformly-sampled random element of
    /// the slice, or `None` if the slice is empty.
    ///
    /// For slices, complexity is `O(1)`.
    fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Output>
    where
        R: Rng + ?Sized,
    {
        if self.is_empty() {
            None
        } else {
            let len = self.len();
            Some(&mut self[rng.random_range(..len)])
        }
    }

    /// Biased sampling for one element (mut)
    ///
    /// Returns a mutable reference to one element of the slice, sampled according
    /// to the provided weights. Returns `None` only if the slice is empty.
    ///
    /// The specified function `weight` maps each item `x` to a relative
    /// likelihood `weight(x)`. The probability of each item being selected is
    /// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
    ///
    /// For slices of length `n`, complexity is `O(n)`.
    /// For more information about the underlying algorithm,
    /// see the [`WeightedIndex`] distribution.
    ///
    /// See also [`choose_weighted`].
    ///
    /// [`choose_mut`]: IndexedMutRandom::choose_mut
    /// [`choose_weighted`]: IndexedRandom::choose_weighted
    /// [`WeightedIndex`]: crate::distr::weighted::WeightedIndex
    #[cfg(feature = "alloc")]
    fn choose_weighted_mut<R, F, B, X>(
        &mut self,
        rng: &mut R,
        weight: F,
    ) -> Result<&mut Self::Output, WeightError>
    where
        R: Rng + ?Sized,
        F: Fn(&Self::Output) -> B,
        B: SampleBorrow<X>,
        X: SampleUniform + Weight + PartialOrd<X>,
    {
        use crate::distr::{weighted::WeightedIndex, Distribution};
        let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?;
        let index = distr.sample(rng);
        Ok(&mut self[index])
    }
}

/// Extension trait on slices, providing shuffling methods.
///
/// This trait is implemented on all `[T]` slice types, providing several
/// methods for choosing and shuffling elements. You must `use` this trait:
///
/// ```
/// use rand::seq::SliceRandom;
///
/// let mut rng = rand::rng();
/// let mut bytes = "Hello, random!".to_string().into_bytes();
/// bytes.shuffle(&mut rng);
/// let str = String::from_utf8(bytes).unwrap();
/// println!("{}", str);
/// ```
/// Example output (non-deterministic):
/// ```none
/// l,nmroHado !le
/// ```
pub trait SliceRandom: IndexedMutRandom {
    /// Shuffle a mutable slice in place.
    ///
    /// For slices of length `n`, complexity is `O(n)`.
    /// The resulting permutation is picked uniformly from the set of all possible permutations.
    ///
    /// # Example
    ///
    /// ```
    /// use rand::seq::SliceRandom;
    ///
    /// let mut rng = rand::rng();
    /// let mut y = [1, 2, 3, 4, 5];
    /// println!("Unshuffled: {:?}", y);
    /// y.shuffle(&mut rng);
    /// println!("Shuffled:   {:?}", y);
    /// ```
    fn shuffle<R>(&mut self, rng: &mut R)
    where
        R: Rng + ?Sized;

    /// Shuffle a slice in place, but exit early.
    ///
    /// Returns two mutable slices from the source slice. The first contains
    /// `amount` elements randomly permuted. The second has the remaining
    /// elements that are not fully shuffled.
    ///
    /// This is an efficient method to select `amount` elements at random from
    /// the slice, provided the slice may be mutated.
    ///
    /// If you only need to choose elements randomly and `amount > self.len()/2`
    /// then you may improve performance by taking
    /// `amount = self.len() - amount` and using only the second slice.
    ///
    /// If `amount` is greater than the number of elements in the slice, this
    /// will perform a full shuffle.
    ///
    /// For slices, complexity is `O(m)` where `m = amount`.
    fn partial_shuffle<R>(
        &mut self,
        rng: &mut R,
        amount: usize,
    ) -> (&mut [Self::Output], &mut [Self::Output])
    where
        Self::Output: Sized,
        R: Rng + ?Sized;
}

impl<T> IndexedRandom for [T] {
    fn len(&self) -> usize {
        self.len()
    }
}

impl<IR: IndexedRandom + IndexMut<usize> + ?Sized> IndexedMutRandom for IR {}

impl<T> SliceRandom for [T] {
    fn shuffle<R>(&mut self, rng: &mut R)
    where
        R: Rng + ?Sized,
    {
        if self.len() <= 1 {
            // There is no need to shuffle an empty or single element slice
            return;
        }
        self.partial_shuffle(rng, self.len());
    }

    fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize) -> (&mut [T], &mut [T])
    where
        R: Rng + ?Sized,
    {
        let m = self.len().saturating_sub(amount);

        // The algorithm below is based on Durstenfeld's algorithm for the
        // [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
        // for an unbiased permutation.
        // It ensures that the last `amount` elements of the slice
        // are randomly selected from the whole slice.

        // `IncreasingUniform::next_index()` is faster than `Rng::random_range`
        // but only works for 32 bit integers
        // So we must use the slow method if the slice is longer than that.
        if self.len() < (u32::MAX as usize) {
            let mut chooser = IncreasingUniform::new(rng, m as u32);
            for i in m..self.len() {
                let index = chooser.next_index();
                self.swap(i, index);
            }
        } else {
            for i in m..self.len() {
                let index = rng.random_range(..i + 1);
                self.swap(i, index);
            }
        }
        let r = self.split_at_mut(m);
        (r.1, r.0)
    }
}

/// An iterator over multiple slice elements.
///
/// This struct is created by
/// [`IndexedRandom::choose_multiple`](trait.IndexedRandom.html#tymethod.choose_multiple).
#[cfg(feature = "alloc")]
#[derive(Debug)]
pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
    slice: &'a S,
    _phantom: core::marker::PhantomData<T>,
    indices: index::IndexVecIntoIter,
}

#[cfg(feature = "alloc")]
impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> {
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        // TODO: investigate using SliceIndex::get_unchecked when stable
        self.indices.next().map(|i| &self.slice[i])
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        (self.indices.len(), Some(self.indices.len()))
    }
}

#[cfg(feature = "alloc")]
impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
    for SliceChooseIter<'a, S, T>
{
    fn len(&self) -> usize {
        self.indices.len()
    }
}

#[cfg(test)]
mod test {
    use super::*;
    #[cfg(feature = "alloc")]
    use alloc::vec::Vec;

    #[test]
    fn test_slice_choose() {
        let mut r = crate::test::rng(107);
        let chars = [
            'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
        ];
        let mut chosen = [0i32; 14];
        // The below all use a binomial distribution with n=1000, p=1/14.
        // binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5
        for _ in 0..1000 {
            let picked = *chars.choose(&mut r).unwrap();
            chosen[(picked as usize) - ('a' as usize)] += 1;
        }
        for count in chosen.iter() {
            assert!(40 < *count && *count < 106);
        }

        chosen.iter_mut().for_each(|x| *x = 0);
        for _ in 0..1000 {
            *chosen.choose_mut(&mut r).unwrap() += 1;
        }
        for count in chosen.iter() {
            assert!(40 < *count && *count < 106);
        }

        let mut v: [isize; 0] = [];
        assert_eq!(v.choose(&mut r), None);
        assert_eq!(v.choose_mut(&mut r), None);
    }

    #[test]
    fn value_stability_slice() {
        let mut r = crate::test::rng(413);
        let chars = [
            'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
        ];
        let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];

        assert_eq!(chars.choose(&mut r), Some(&'l'));
        assert_eq!(nums.choose_mut(&mut r), Some(&mut 3));

        assert_eq!(
            &chars.choose_multiple_array(&mut r),
            &Some(['f', 'i', 'd', 'b', 'c', 'm', 'j', 'k'])
        );

        #[cfg(feature = "alloc")]
        assert_eq!(
            &chars
                .choose_multiple(&mut r, 8)
                .cloned()
                .collect::<Vec<char>>(),
            &['h', 'm', 'd', 'b', 'c', 'e', 'n', 'f']
        );

        #[cfg(feature = "alloc")]
        assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'i'));
        #[cfg(feature = "alloc")]
        assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 2));

        let mut r = crate::test::rng(414);
        nums.shuffle(&mut r);
        assert_eq!(nums, [5, 11, 0, 8, 7, 12, 6, 4, 9, 3, 1, 2, 10]);
        nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
        let res = nums.partial_shuffle(&mut r, 6);
        assert_eq!(res.0, &mut [7, 12, 6, 8, 1, 9]);
        assert_eq!(res.1, &mut [0, 11, 2, 3, 4, 5, 10]);
    }

    #[test]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_shuffle() {
        let mut r = crate::test::rng(108);
        let empty: &mut [isize] = &mut [];
        empty.shuffle(&mut r);
        let mut one = [1];
        one.shuffle(&mut r);
        let b: &[_] = &[1];
        assert_eq!(one, b);

        let mut two = [1, 2];
        two.shuffle(&mut r);
        assert!(two == [1, 2] || two == [2, 1]);

        fn move_last(slice: &mut [usize], pos: usize) {
            // use slice[pos..].rotate_left(1); once we can use that
            let last_val = slice[pos];
            for i in pos..slice.len() - 1 {
                slice[i] = slice[i + 1];
            }
            *slice.last_mut().unwrap() = last_val;
        }
        let mut counts = [0i32; 24];
        for _ in 0..10000 {
            let mut arr: [usize; 4] = [0, 1, 2, 3];
            arr.shuffle(&mut r);
            let mut permutation = 0usize;
            let mut pos_value = counts.len();
            for i in 0..4 {
                pos_value /= 4 - i;
                let pos = arr.iter().position(|&x| x == i).unwrap();
                assert!(pos < (4 - i));
                permutation += pos * pos_value;
                move_last(&mut arr, pos);
                assert_eq!(arr[3], i);
            }
            for (i, &a) in arr.iter().enumerate() {
                assert_eq!(a, i);
            }
            counts[permutation] += 1;
        }
        for count in counts.iter() {
            // Binomial(10000, 1/24) with average 416.667
            // Octave: binocdf(n, 10000, 1/24)
            // 99.9% chance samples lie within this range:
            assert!(352 <= *count && *count <= 483, "count: {}", count);
        }
    }

    #[test]
    fn test_partial_shuffle() {
        let mut r = crate::test::rng(118);

        let mut empty: [u32; 0] = [];
        let res = empty.partial_shuffle(&mut r, 10);
        assert_eq!((res.0.len(), res.1.len()), (0, 0));

        let mut v = [1, 2, 3, 4, 5];
        let res = v.partial_shuffle(&mut r, 2);
        assert_eq!((res.0.len(), res.1.len()), (2, 3));
        assert!(res.0[0] != res.0[1]);
        // First elements are only modified if selected, so at least one isn't modified:
        assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3);
    }

    #[test]
    #[cfg(feature = "alloc")]
    #[cfg_attr(miri, ignore)] // Miri is too slow
    fn test_weighted() {
        let mut r = crate::test::rng(406);
        const N_REPS: u32 = 3000;
        let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
        let total_weight = weights.iter().sum::<u32>() as f32;

        let verify = |result: [i32; 14]| {
            for (i, count) in result.iter().enumerate() {
                let exp = (weights[i] * N_REPS) as f32 / total_weight;
                let mut err = (*count as f32 - exp).abs();
                if err != 0.0 {
                    err /= exp;
                }
                assert!(err <= 0.25);
            }
        };

        // choose_weighted
        fn get_weight<T>(item: &(u32, T)) -> u32 {
            item.0
        }
        let mut chosen = [0i32; 14];
        let mut items = [(0u32, 0usize); 14]; // (weight, index)
        for (i, item) in items.iter_mut().enumerate() {
            *item = (weights[i], i);
        }
        for _ in 0..N_REPS {
            let item = items.choose_weighted(&mut r, get_weight).unwrap();
            chosen[item.1] += 1;
        }
        verify(chosen);

        // choose_weighted_mut
        let mut items = [(0u32, 0i32); 14]; // (weight, count)
        for (i, item) in items.iter_mut().enumerate() {
            *item = (weights[i], 0);
        }
        for _ in 0..N_REPS {
            items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1;
        }
        for (ch, item) in chosen.iter_mut().zip(items.iter()) {
            *ch = item.1;
        }
        verify(chosen);

        // Check error cases
        let empty_slice = &mut [10][0..0];
        assert_eq!(
            empty_slice.choose_weighted(&mut r, |_| 1),
            Err(WeightError::InvalidInput)
        );
        assert_eq!(
            empty_slice.choose_weighted_mut(&mut r, |_| 1),
            Err(WeightError::InvalidInput)
        );
        assert_eq!(
            ['x'].choose_weighted_mut(&mut r, |_| 0),
            Err(WeightError::InsufficientNonZero)
        );
        assert_eq!(
            [0, -1].choose_weighted_mut(&mut r, |x| *x),
            Err(WeightError::InvalidWeight)
        );
        assert_eq!(
            [-1, 0].choose_weighted_mut(&mut r, |x| *x),
            Err(WeightError::InvalidWeight)
        );
    }

    #[test]
    #[cfg(feature = "std")]
    fn test_multiple_weighted_edge_cases() {
        use super::*;

        let mut rng = crate::test::rng(413);

        // Case 1: One of the weights is 0
        let choices = [('a', 2), ('b', 1), ('c', 0)];
        for _ in 0..100 {
            let result = choices
                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
                .unwrap()
                .collect::<Vec<_>>();

            assert_eq!(result.len(), 2);
            assert!(!result.iter().any(|val| val.0 == 'c'));
        }

        // Case 2: All of the weights are 0
        let choices = [('a', 0), ('b', 0), ('c', 0)];
        let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
        assert_eq!(r.unwrap_err(), WeightError::InsufficientNonZero);

        // Case 3: Negative weights
        let choices = [('a', -1), ('b', 1), ('c', 1)];
        let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
        assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);

        // Case 4: Empty list
        let choices = [];
        let r = choices.choose_multiple_weighted(&mut rng, 0, |_: &()| 0);
        assert_eq!(r.unwrap().count(), 0);

        // Case 5: NaN weights
        let choices = [('a', f64::NAN), ('b', 1.0), ('c', 1.0)];
        let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
        assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);

        // Case 6: +infinity weights
        let choices = [('a', f64::INFINITY), ('b', 1.0), ('c', 1.0)];
        for _ in 0..100 {
            let result = choices
                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
                .unwrap()
                .collect::<Vec<_>>();
            assert_eq!(result.len(), 2);
            assert!(result.iter().any(|val| val.0 == 'a'));
        }

        // Case 7: -infinity weights
        let choices = [('a', f64::NEG_INFINITY), ('b', 1.0), ('c', 1.0)];
        let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
        assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);

        // Case 8: -0 weights
        let choices = [('a', -0.0), ('b', 1.0), ('c', 1.0)];
        let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
        assert!(r.is_ok());
    }

    #[test]
    #[cfg(feature = "std")]
    fn test_multiple_weighted_distributions() {
        use super::*;

        // The theoretical probabilities of the different outcomes are:
        // AB: 0.5   * 0.667 = 0.3333
        // AC: 0.5   * 0.333 = 0.1667
        // BA: 0.333 * 0.75  = 0.25
        // BC: 0.333 * 0.25  = 0.0833
        // CA: 0.167 * 0.6   = 0.1
        // CB: 0.167 * 0.4   = 0.0667
        let choices = [('a', 3), ('b', 2), ('c', 1)];
        let mut rng = crate::test::rng(414);

        let mut results = [0i32; 3];
        let expected_results = [5833, 2667, 1500];
        for _ in 0..10000 {
            let result = choices
                .choose_multiple_weighted(&mut rng, 2, |item| item.1)
                .unwrap()
                .collect::<Vec<_>>();

            assert_eq!(result.len(), 2);

            match (result[0].0, result[1].0) {
                ('a', 'b') | ('b', 'a') => {
                    results[0] += 1;
                }
                ('a', 'c') | ('c', 'a') => {
                    results[1] += 1;
                }
                ('b', 'c') | ('c', 'b') => {
                    results[2] += 1;
                }
                (_, _) => panic!("unexpected result"),
            }
        }

        let mut diffs = results
            .iter()
            .zip(&expected_results)
            .map(|(a, b)| (a - b).abs());
        assert!(!diffs.any(|deviation| deviation > 100));
    }
}