rand/seq/slice.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
// Copyright 2018-2023 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! `IndexedRandom`, `IndexedMutRandom`, `SliceRandom`
use super::increasing_uniform::IncreasingUniform;
use super::index;
#[cfg(feature = "alloc")]
use crate::distr::uniform::{SampleBorrow, SampleUniform};
#[cfg(feature = "alloc")]
use crate::distr::weighted::{Error as WeightError, Weight};
use crate::Rng;
use core::ops::{Index, IndexMut};
/// Extension trait on indexable lists, providing random sampling methods.
///
/// This trait is implemented on `[T]` slice types. Other types supporting
/// [`std::ops::Index<usize>`] may implement this (only [`Self::len`] must be
/// specified).
pub trait IndexedRandom: Index<usize> {
/// The length
fn len(&self) -> usize;
/// True when the length is zero
#[inline]
fn is_empty(&self) -> bool {
self.len() == 0
}
/// Uniformly sample one element
///
/// Returns a reference to one uniformly-sampled random element of
/// the slice, or `None` if the slice is empty.
///
/// For slices, complexity is `O(1)`.
///
/// # Example
///
/// ```
/// use rand::seq::IndexedRandom;
///
/// let choices = [1, 2, 4, 8, 16, 32];
/// let mut rng = rand::rng();
/// println!("{:?}", choices.choose(&mut rng));
/// assert_eq!(choices[..0].choose(&mut rng), None);
/// ```
fn choose<R>(&self, rng: &mut R) -> Option<&Self::Output>
where
R: Rng + ?Sized,
{
if self.is_empty() {
None
} else {
Some(&self[rng.random_range(..self.len())])
}
}
/// Uniformly sample `amount` distinct elements from self
///
/// Chooses `amount` elements from the slice at random, without repetition,
/// and in random order. The returned iterator is appropriate both for
/// collection into a `Vec` and filling an existing buffer (see example).
///
/// In case this API is not sufficiently flexible, use [`index::sample`].
///
/// For slices, complexity is the same as [`index::sample`].
///
/// # Example
/// ```
/// use rand::seq::IndexedRandom;
///
/// let mut rng = &mut rand::rng();
/// let sample = "Hello, audience!".as_bytes();
///
/// // collect the results into a vector:
/// let v: Vec<u8> = sample.choose_multiple(&mut rng, 3).cloned().collect();
///
/// // store in a buffer:
/// let mut buf = [0u8; 5];
/// for (b, slot) in sample.choose_multiple(&mut rng, buf.len()).zip(buf.iter_mut()) {
/// *slot = *b;
/// }
/// ```
#[cfg(feature = "alloc")]
fn choose_multiple<R>(&self, rng: &mut R, amount: usize) -> SliceChooseIter<Self, Self::Output>
where
Self::Output: Sized,
R: Rng + ?Sized,
{
let amount = core::cmp::min(amount, self.len());
SliceChooseIter {
slice: self,
_phantom: Default::default(),
indices: index::sample(rng, self.len(), amount).into_iter(),
}
}
/// Uniformly sample a fixed-size array of distinct elements from self
///
/// Chooses `N` elements from the slice at random, without repetition,
/// and in random order.
///
/// For slices, complexity is the same as [`index::sample_array`].
///
/// # Example
/// ```
/// use rand::seq::IndexedRandom;
///
/// let mut rng = &mut rand::rng();
/// let sample = "Hello, audience!".as_bytes();
///
/// let a: [u8; 3] = sample.choose_multiple_array(&mut rng).unwrap();
/// ```
fn choose_multiple_array<R, const N: usize>(&self, rng: &mut R) -> Option<[Self::Output; N]>
where
Self::Output: Clone + Sized,
R: Rng + ?Sized,
{
let indices = index::sample_array(rng, self.len())?;
Some(indices.map(|index| self[index].clone()))
}
/// Biased sampling for one element
///
/// Returns a reference to one element of the slice, sampled according
/// to the provided weights. Returns `None` only if the slice is empty.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// For slices of length `n`, complexity is `O(n)`.
/// For more information about the underlying algorithm,
/// see the [`WeightedIndex`] distribution.
///
/// See also [`choose_weighted_mut`].
///
/// # Example
///
/// ```
/// use rand::prelude::*;
///
/// let choices = [('a', 2), ('b', 1), ('c', 1), ('d', 0)];
/// let mut rng = rand::rng();
/// // 50% chance to print 'a', 25% chance to print 'b', 25% chance to print 'c',
/// // and 'd' will never be printed
/// println!("{:?}", choices.choose_weighted(&mut rng, |item| item.1).unwrap().0);
/// ```
/// [`choose`]: IndexedRandom::choose
/// [`choose_weighted_mut`]: IndexedMutRandom::choose_weighted_mut
/// [`WeightedIndex`]: crate::distr::weighted::WeightedIndex
#[cfg(feature = "alloc")]
fn choose_weighted<R, F, B, X>(
&self,
rng: &mut R,
weight: F,
) -> Result<&Self::Output, WeightError>
where
R: Rng + ?Sized,
F: Fn(&Self::Output) -> B,
B: SampleBorrow<X>,
X: SampleUniform + Weight + PartialOrd<X>,
{
use crate::distr::{weighted::WeightedIndex, Distribution};
let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?;
Ok(&self[distr.sample(rng)])
}
/// Biased sampling of `amount` distinct elements
///
/// Similar to [`choose_multiple`], but where the likelihood of each element's
/// inclusion in the output may be specified. The elements are returned in an
/// arbitrary, unspecified order.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// If all of the weights are equal, even if they are all zero, each element has
/// an equal likelihood of being selected.
///
/// This implementation uses `O(length + amount)` space and `O(length)` time
/// if the "nightly" feature is enabled, or `O(length)` space and
/// `O(length + amount * log length)` time otherwise.
///
/// # Known issues
///
/// The algorithm currently used to implement this method loses accuracy
/// when small values are used for weights.
/// See [#1476](https://github.com/rust-random/rand/issues/1476).
///
/// # Example
///
/// ```
/// use rand::prelude::*;
///
/// let choices = [('a', 2), ('b', 1), ('c', 1)];
/// let mut rng = rand::rng();
/// // First Draw * Second Draw = total odds
/// // -----------------------
/// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'b']` in some order.
/// // (50% * 50%) + (25% * 67%) = 41.7% chance that the output is `['a', 'c']` in some order.
/// // (25% * 33%) + (25% * 33%) = 16.6% chance that the output is `['b', 'c']` in some order.
/// println!("{:?}", choices.choose_multiple_weighted(&mut rng, 2, |item| item.1).unwrap().collect::<Vec<_>>());
/// ```
/// [`choose_multiple`]: IndexedRandom::choose_multiple
// Note: this is feature-gated on std due to usage of f64::powf.
// If necessary, we may use alloc+libm as an alternative (see PR #1089).
#[cfg(feature = "std")]
fn choose_multiple_weighted<R, F, X>(
&self,
rng: &mut R,
amount: usize,
weight: F,
) -> Result<SliceChooseIter<Self, Self::Output>, WeightError>
where
Self::Output: Sized,
R: Rng + ?Sized,
F: Fn(&Self::Output) -> X,
X: Into<f64>,
{
let amount = core::cmp::min(amount, self.len());
Ok(SliceChooseIter {
slice: self,
_phantom: Default::default(),
indices: index::sample_weighted(
rng,
self.len(),
|idx| weight(&self[idx]).into(),
amount,
)?
.into_iter(),
})
}
}
/// Extension trait on indexable lists, providing random sampling methods.
///
/// This trait is implemented automatically for every type implementing
/// [`IndexedRandom`] and [`std::ops::IndexMut<usize>`].
pub trait IndexedMutRandom: IndexedRandom + IndexMut<usize> {
/// Uniformly sample one element (mut)
///
/// Returns a mutable reference to one uniformly-sampled random element of
/// the slice, or `None` if the slice is empty.
///
/// For slices, complexity is `O(1)`.
fn choose_mut<R>(&mut self, rng: &mut R) -> Option<&mut Self::Output>
where
R: Rng + ?Sized,
{
if self.is_empty() {
None
} else {
let len = self.len();
Some(&mut self[rng.random_range(..len)])
}
}
/// Biased sampling for one element (mut)
///
/// Returns a mutable reference to one element of the slice, sampled according
/// to the provided weights. Returns `None` only if the slice is empty.
///
/// The specified function `weight` maps each item `x` to a relative
/// likelihood `weight(x)`. The probability of each item being selected is
/// therefore `weight(x) / s`, where `s` is the sum of all `weight(x)`.
///
/// For slices of length `n`, complexity is `O(n)`.
/// For more information about the underlying algorithm,
/// see the [`WeightedIndex`] distribution.
///
/// See also [`choose_weighted`].
///
/// [`choose_mut`]: IndexedMutRandom::choose_mut
/// [`choose_weighted`]: IndexedRandom::choose_weighted
/// [`WeightedIndex`]: crate::distr::weighted::WeightedIndex
#[cfg(feature = "alloc")]
fn choose_weighted_mut<R, F, B, X>(
&mut self,
rng: &mut R,
weight: F,
) -> Result<&mut Self::Output, WeightError>
where
R: Rng + ?Sized,
F: Fn(&Self::Output) -> B,
B: SampleBorrow<X>,
X: SampleUniform + Weight + PartialOrd<X>,
{
use crate::distr::{weighted::WeightedIndex, Distribution};
let distr = WeightedIndex::new((0..self.len()).map(|idx| weight(&self[idx])))?;
let index = distr.sample(rng);
Ok(&mut self[index])
}
}
/// Extension trait on slices, providing shuffling methods.
///
/// This trait is implemented on all `[T]` slice types, providing several
/// methods for choosing and shuffling elements. You must `use` this trait:
///
/// ```
/// use rand::seq::SliceRandom;
///
/// let mut rng = rand::rng();
/// let mut bytes = "Hello, random!".to_string().into_bytes();
/// bytes.shuffle(&mut rng);
/// let str = String::from_utf8(bytes).unwrap();
/// println!("{}", str);
/// ```
/// Example output (non-deterministic):
/// ```none
/// l,nmroHado !le
/// ```
pub trait SliceRandom: IndexedMutRandom {
/// Shuffle a mutable slice in place.
///
/// For slices of length `n`, complexity is `O(n)`.
/// The resulting permutation is picked uniformly from the set of all possible permutations.
///
/// # Example
///
/// ```
/// use rand::seq::SliceRandom;
///
/// let mut rng = rand::rng();
/// let mut y = [1, 2, 3, 4, 5];
/// println!("Unshuffled: {:?}", y);
/// y.shuffle(&mut rng);
/// println!("Shuffled: {:?}", y);
/// ```
fn shuffle<R>(&mut self, rng: &mut R)
where
R: Rng + ?Sized;
/// Shuffle a slice in place, but exit early.
///
/// Returns two mutable slices from the source slice. The first contains
/// `amount` elements randomly permuted. The second has the remaining
/// elements that are not fully shuffled.
///
/// This is an efficient method to select `amount` elements at random from
/// the slice, provided the slice may be mutated.
///
/// If you only need to choose elements randomly and `amount > self.len()/2`
/// then you may improve performance by taking
/// `amount = self.len() - amount` and using only the second slice.
///
/// If `amount` is greater than the number of elements in the slice, this
/// will perform a full shuffle.
///
/// For slices, complexity is `O(m)` where `m = amount`.
fn partial_shuffle<R>(
&mut self,
rng: &mut R,
amount: usize,
) -> (&mut [Self::Output], &mut [Self::Output])
where
Self::Output: Sized,
R: Rng + ?Sized;
}
impl<T> IndexedRandom for [T] {
fn len(&self) -> usize {
self.len()
}
}
impl<IR: IndexedRandom + IndexMut<usize> + ?Sized> IndexedMutRandom for IR {}
impl<T> SliceRandom for [T] {
fn shuffle<R>(&mut self, rng: &mut R)
where
R: Rng + ?Sized,
{
if self.len() <= 1 {
// There is no need to shuffle an empty or single element slice
return;
}
self.partial_shuffle(rng, self.len());
}
fn partial_shuffle<R>(&mut self, rng: &mut R, amount: usize) -> (&mut [T], &mut [T])
where
R: Rng + ?Sized,
{
let m = self.len().saturating_sub(amount);
// The algorithm below is based on Durstenfeld's algorithm for the
// [Fisher–Yates shuffle](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm)
// for an unbiased permutation.
// It ensures that the last `amount` elements of the slice
// are randomly selected from the whole slice.
// `IncreasingUniform::next_index()` is faster than `Rng::random_range`
// but only works for 32 bit integers
// So we must use the slow method if the slice is longer than that.
if self.len() < (u32::MAX as usize) {
let mut chooser = IncreasingUniform::new(rng, m as u32);
for i in m..self.len() {
let index = chooser.next_index();
self.swap(i, index);
}
} else {
for i in m..self.len() {
let index = rng.random_range(..i + 1);
self.swap(i, index);
}
}
let r = self.split_at_mut(m);
(r.1, r.0)
}
}
/// An iterator over multiple slice elements.
///
/// This struct is created by
/// [`IndexedRandom::choose_multiple`](trait.IndexedRandom.html#tymethod.choose_multiple).
#[cfg(feature = "alloc")]
#[derive(Debug)]
pub struct SliceChooseIter<'a, S: ?Sized + 'a, T: 'a> {
slice: &'a S,
_phantom: core::marker::PhantomData<T>,
indices: index::IndexVecIntoIter,
}
#[cfg(feature = "alloc")]
impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> Iterator for SliceChooseIter<'a, S, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> {
// TODO: investigate using SliceIndex::get_unchecked when stable
self.indices.next().map(|i| &self.slice[i])
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.indices.len(), Some(self.indices.len()))
}
}
#[cfg(feature = "alloc")]
impl<'a, S: Index<usize, Output = T> + ?Sized + 'a, T: 'a> ExactSizeIterator
for SliceChooseIter<'a, S, T>
{
fn len(&self) -> usize {
self.indices.len()
}
}
#[cfg(test)]
mod test {
use super::*;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[test]
fn test_slice_choose() {
let mut r = crate::test::rng(107);
let chars = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
];
let mut chosen = [0i32; 14];
// The below all use a binomial distribution with n=1000, p=1/14.
// binocdf(40, 1000, 1/14) ~= 2e-5; 1-binocdf(106, ..) ~= 2e-5
for _ in 0..1000 {
let picked = *chars.choose(&mut r).unwrap();
chosen[(picked as usize) - ('a' as usize)] += 1;
}
for count in chosen.iter() {
assert!(40 < *count && *count < 106);
}
chosen.iter_mut().for_each(|x| *x = 0);
for _ in 0..1000 {
*chosen.choose_mut(&mut r).unwrap() += 1;
}
for count in chosen.iter() {
assert!(40 < *count && *count < 106);
}
let mut v: [isize; 0] = [];
assert_eq!(v.choose(&mut r), None);
assert_eq!(v.choose_mut(&mut r), None);
}
#[test]
fn value_stability_slice() {
let mut r = crate::test::rng(413);
let chars = [
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
];
let mut nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
assert_eq!(chars.choose(&mut r), Some(&'l'));
assert_eq!(nums.choose_mut(&mut r), Some(&mut 3));
assert_eq!(
&chars.choose_multiple_array(&mut r),
&Some(['f', 'i', 'd', 'b', 'c', 'm', 'j', 'k'])
);
#[cfg(feature = "alloc")]
assert_eq!(
&chars
.choose_multiple(&mut r, 8)
.cloned()
.collect::<Vec<char>>(),
&['h', 'm', 'd', 'b', 'c', 'e', 'n', 'f']
);
#[cfg(feature = "alloc")]
assert_eq!(chars.choose_weighted(&mut r, |_| 1), Ok(&'i'));
#[cfg(feature = "alloc")]
assert_eq!(nums.choose_weighted_mut(&mut r, |_| 1), Ok(&mut 2));
let mut r = crate::test::rng(414);
nums.shuffle(&mut r);
assert_eq!(nums, [5, 11, 0, 8, 7, 12, 6, 4, 9, 3, 1, 2, 10]);
nums = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];
let res = nums.partial_shuffle(&mut r, 6);
assert_eq!(res.0, &mut [7, 12, 6, 8, 1, 9]);
assert_eq!(res.1, &mut [0, 11, 2, 3, 4, 5, 10]);
}
#[test]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_shuffle() {
let mut r = crate::test::rng(108);
let empty: &mut [isize] = &mut [];
empty.shuffle(&mut r);
let mut one = [1];
one.shuffle(&mut r);
let b: &[_] = &[1];
assert_eq!(one, b);
let mut two = [1, 2];
two.shuffle(&mut r);
assert!(two == [1, 2] || two == [2, 1]);
fn move_last(slice: &mut [usize], pos: usize) {
// use slice[pos..].rotate_left(1); once we can use that
let last_val = slice[pos];
for i in pos..slice.len() - 1 {
slice[i] = slice[i + 1];
}
*slice.last_mut().unwrap() = last_val;
}
let mut counts = [0i32; 24];
for _ in 0..10000 {
let mut arr: [usize; 4] = [0, 1, 2, 3];
arr.shuffle(&mut r);
let mut permutation = 0usize;
let mut pos_value = counts.len();
for i in 0..4 {
pos_value /= 4 - i;
let pos = arr.iter().position(|&x| x == i).unwrap();
assert!(pos < (4 - i));
permutation += pos * pos_value;
move_last(&mut arr, pos);
assert_eq!(arr[3], i);
}
for (i, &a) in arr.iter().enumerate() {
assert_eq!(a, i);
}
counts[permutation] += 1;
}
for count in counts.iter() {
// Binomial(10000, 1/24) with average 416.667
// Octave: binocdf(n, 10000, 1/24)
// 99.9% chance samples lie within this range:
assert!(352 <= *count && *count <= 483, "count: {}", count);
}
}
#[test]
fn test_partial_shuffle() {
let mut r = crate::test::rng(118);
let mut empty: [u32; 0] = [];
let res = empty.partial_shuffle(&mut r, 10);
assert_eq!((res.0.len(), res.1.len()), (0, 0));
let mut v = [1, 2, 3, 4, 5];
let res = v.partial_shuffle(&mut r, 2);
assert_eq!((res.0.len(), res.1.len()), (2, 3));
assert!(res.0[0] != res.0[1]);
// First elements are only modified if selected, so at least one isn't modified:
assert!(res.1[0] == 1 || res.1[1] == 2 || res.1[2] == 3);
}
#[test]
#[cfg(feature = "alloc")]
#[cfg_attr(miri, ignore)] // Miri is too slow
fn test_weighted() {
let mut r = crate::test::rng(406);
const N_REPS: u32 = 3000;
let weights = [1u32, 2, 3, 0, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7];
let total_weight = weights.iter().sum::<u32>() as f32;
let verify = |result: [i32; 14]| {
for (i, count) in result.iter().enumerate() {
let exp = (weights[i] * N_REPS) as f32 / total_weight;
let mut err = (*count as f32 - exp).abs();
if err != 0.0 {
err /= exp;
}
assert!(err <= 0.25);
}
};
// choose_weighted
fn get_weight<T>(item: &(u32, T)) -> u32 {
item.0
}
let mut chosen = [0i32; 14];
let mut items = [(0u32, 0usize); 14]; // (weight, index)
for (i, item) in items.iter_mut().enumerate() {
*item = (weights[i], i);
}
for _ in 0..N_REPS {
let item = items.choose_weighted(&mut r, get_weight).unwrap();
chosen[item.1] += 1;
}
verify(chosen);
// choose_weighted_mut
let mut items = [(0u32, 0i32); 14]; // (weight, count)
for (i, item) in items.iter_mut().enumerate() {
*item = (weights[i], 0);
}
for _ in 0..N_REPS {
items.choose_weighted_mut(&mut r, get_weight).unwrap().1 += 1;
}
for (ch, item) in chosen.iter_mut().zip(items.iter()) {
*ch = item.1;
}
verify(chosen);
// Check error cases
let empty_slice = &mut [10][0..0];
assert_eq!(
empty_slice.choose_weighted(&mut r, |_| 1),
Err(WeightError::InvalidInput)
);
assert_eq!(
empty_slice.choose_weighted_mut(&mut r, |_| 1),
Err(WeightError::InvalidInput)
);
assert_eq!(
['x'].choose_weighted_mut(&mut r, |_| 0),
Err(WeightError::InsufficientNonZero)
);
assert_eq!(
[0, -1].choose_weighted_mut(&mut r, |x| *x),
Err(WeightError::InvalidWeight)
);
assert_eq!(
[-1, 0].choose_weighted_mut(&mut r, |x| *x),
Err(WeightError::InvalidWeight)
);
}
#[test]
#[cfg(feature = "std")]
fn test_multiple_weighted_edge_cases() {
use super::*;
let mut rng = crate::test::rng(413);
// Case 1: One of the weights is 0
let choices = [('a', 2), ('b', 1), ('c', 0)];
for _ in 0..100 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
assert!(!result.iter().any(|val| val.0 == 'c'));
}
// Case 2: All of the weights are 0
let choices = [('a', 0), ('b', 0), ('c', 0)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert_eq!(r.unwrap_err(), WeightError::InsufficientNonZero);
// Case 3: Negative weights
let choices = [('a', -1), ('b', 1), ('c', 1)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
// Case 4: Empty list
let choices = [];
let r = choices.choose_multiple_weighted(&mut rng, 0, |_: &()| 0);
assert_eq!(r.unwrap().count(), 0);
// Case 5: NaN weights
let choices = [('a', f64::NAN), ('b', 1.0), ('c', 1.0)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
// Case 6: +infinity weights
let choices = [('a', f64::INFINITY), ('b', 1.0), ('c', 1.0)];
for _ in 0..100 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
assert!(result.iter().any(|val| val.0 == 'a'));
}
// Case 7: -infinity weights
let choices = [('a', f64::NEG_INFINITY), ('b', 1.0), ('c', 1.0)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert_eq!(r.unwrap_err(), WeightError::InvalidWeight);
// Case 8: -0 weights
let choices = [('a', -0.0), ('b', 1.0), ('c', 1.0)];
let r = choices.choose_multiple_weighted(&mut rng, 2, |item| item.1);
assert!(r.is_ok());
}
#[test]
#[cfg(feature = "std")]
fn test_multiple_weighted_distributions() {
use super::*;
// The theoretical probabilities of the different outcomes are:
// AB: 0.5 * 0.667 = 0.3333
// AC: 0.5 * 0.333 = 0.1667
// BA: 0.333 * 0.75 = 0.25
// BC: 0.333 * 0.25 = 0.0833
// CA: 0.167 * 0.6 = 0.1
// CB: 0.167 * 0.4 = 0.0667
let choices = [('a', 3), ('b', 2), ('c', 1)];
let mut rng = crate::test::rng(414);
let mut results = [0i32; 3];
let expected_results = [5833, 2667, 1500];
for _ in 0..10000 {
let result = choices
.choose_multiple_weighted(&mut rng, 2, |item| item.1)
.unwrap()
.collect::<Vec<_>>();
assert_eq!(result.len(), 2);
match (result[0].0, result[1].0) {
('a', 'b') | ('b', 'a') => {
results[0] += 1;
}
('a', 'c') | ('c', 'a') => {
results[1] += 1;
}
('b', 'c') | ('c', 'b') => {
results[2] += 1;
}
(_, _) => panic!("unexpected result"),
}
}
let mut diffs = results
.iter()
.zip(&expected_results)
.map(|(a, b)| (a - b).abs());
assert!(!diffs.any(|deviation| deviation > 100));
}
}