tower/retry/
backoff.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
//! This module contains generic [backoff] utilities to be used with the retry
//! layer.
//!
//! The [`Backoff`] trait is a generic way to represent backoffs that can use
//! any timer type.
//!
//! [`ExponentialBackoffMaker`] implements the maker type for  
//! [`ExponentialBackoff`] which implements the [`Backoff`] trait and provides
//! a batteries included exponential backoff and jitter strategy.
//!
//! [backoff]: https://en.wikipedia.org/wiki/Exponential_backoff

use std::fmt::Display;
use std::future::Future;
use std::time::Duration;
use tokio::time;

use crate::util::rng::{HasherRng, Rng};

/// Trait used to construct [`Backoff`] trait implementors.
pub trait MakeBackoff {
    /// The backoff type produced by this maker.
    type Backoff: Backoff;

    /// Constructs a new backoff type.
    fn make_backoff(&mut self) -> Self::Backoff;
}

/// A backoff trait where a single mutable reference represents a single
/// backoff session. Implementors must also implement [`Clone`] which will
/// reset the backoff back to the default state for the next session.
pub trait Backoff {
    /// The future associated with each backoff. This usually will be some sort
    /// of timer.
    type Future: Future<Output = ()>;

    /// Initiate the next backoff in the sequence.
    fn next_backoff(&mut self) -> Self::Future;
}

/// A maker type for [`ExponentialBackoff`].
#[derive(Debug, Clone)]
pub struct ExponentialBackoffMaker<R = HasherRng> {
    /// The minimum amount of time to wait before resuming an operation.
    min: time::Duration,
    /// The maximum amount of time to wait before resuming an operation.
    max: time::Duration,
    /// The ratio of the base timeout that may be randomly added to a backoff.
    ///
    /// Must be greater than or equal to 0.0.
    jitter: f64,
    rng: R,
}

/// A jittered [exponential backoff] strategy.
///
/// The backoff duration will increase exponentially for every subsequent
/// backoff, up to a maximum duration. A small amount of [random jitter] is
/// added to each backoff duration, in order to avoid retry spikes.
///
/// [exponential backoff]: https://en.wikipedia.org/wiki/Exponential_backoff
/// [random jitter]: https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
#[derive(Debug, Clone)]
pub struct ExponentialBackoff<R = HasherRng> {
    min: time::Duration,
    max: time::Duration,
    jitter: f64,
    rng: R,
    iterations: u32,
}

impl<R> ExponentialBackoffMaker<R>
where
    R: Rng,
{
    /// Create a new `ExponentialBackoff`.
    ///
    /// # Error
    ///
    /// Returns a config validation error if:
    /// - `min` > `max`
    /// - `max` > 0
    /// - `jitter` >= `0.0`
    /// - `jitter` < `100.0`
    /// - `jitter` is finite
    pub fn new(
        min: time::Duration,
        max: time::Duration,
        jitter: f64,
        rng: R,
    ) -> Result<Self, InvalidBackoff> {
        if min > max {
            return Err(InvalidBackoff("maximum must not be less than minimum"));
        }
        if max == time::Duration::from_millis(0) {
            return Err(InvalidBackoff("maximum must be non-zero"));
        }
        if jitter < 0.0 {
            return Err(InvalidBackoff("jitter must not be negative"));
        }
        if jitter > 100.0 {
            return Err(InvalidBackoff("jitter must not be greater than 100"));
        }
        if !jitter.is_finite() {
            return Err(InvalidBackoff("jitter must be finite"));
        }

        Ok(ExponentialBackoffMaker {
            min,
            max,
            jitter,
            rng,
        })
    }
}

impl<R> MakeBackoff for ExponentialBackoffMaker<R>
where
    R: Rng + Clone,
{
    type Backoff = ExponentialBackoff<R>;

    fn make_backoff(&mut self) -> Self::Backoff {
        ExponentialBackoff {
            max: self.max,
            min: self.min,
            jitter: self.jitter,
            rng: self.rng.clone(),
            iterations: 0,
        }
    }
}

impl<R: Rng> ExponentialBackoff<R> {
    fn base(&self) -> time::Duration {
        debug_assert!(
            self.min <= self.max,
            "maximum backoff must not be less than minimum backoff"
        );
        debug_assert!(
            self.max > time::Duration::from_millis(0),
            "Maximum backoff must be non-zero"
        );
        self.min
            .checked_mul(2_u32.saturating_pow(self.iterations))
            .unwrap_or(self.max)
            .min(self.max)
    }

    /// Returns a random, uniform duration on `[0, base*self.jitter]` no greater
    /// than `self.max`.
    fn jitter(&mut self, base: time::Duration) -> time::Duration {
        if self.jitter == 0.0 {
            time::Duration::default()
        } else {
            let jitter_factor = self.rng.next_f64();
            debug_assert!(
                jitter_factor > 0.0,
                "rng returns values between 0.0 and 1.0"
            );
            let rand_jitter = jitter_factor * self.jitter;
            let secs = (base.as_secs() as f64) * rand_jitter;
            let nanos = (base.subsec_nanos() as f64) * rand_jitter;
            let remaining = self.max - base;
            time::Duration::new(secs as u64, nanos as u32).min(remaining)
        }
    }
}

impl<R> Backoff for ExponentialBackoff<R>
where
    R: Rng,
{
    type Future = tokio::time::Sleep;

    fn next_backoff(&mut self) -> Self::Future {
        let base = self.base();
        let next = base + self.jitter(base);

        self.iterations += 1;

        tokio::time::sleep(next)
    }
}

impl Default for ExponentialBackoffMaker {
    fn default() -> Self {
        ExponentialBackoffMaker::new(
            Duration::from_millis(50),
            Duration::from_millis(u64::MAX),
            0.99,
            HasherRng::default(),
        )
        .expect("Unable to create ExponentialBackoff")
    }
}

/// Backoff validation error.
#[derive(Debug)]
pub struct InvalidBackoff(&'static str);

impl Display for InvalidBackoff {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "invalid backoff: {}", self.0)
    }
}

impl std::error::Error for InvalidBackoff {}

#[cfg(test)]
mod tests {
    use super::*;
    use quickcheck::*;

    quickcheck! {
        fn backoff_base_first(min_ms: u64, max_ms: u64) -> TestResult {
            let min = time::Duration::from_millis(min_ms);
            let max = time::Duration::from_millis(max_ms);
            let rng = HasherRng::default();
            let mut backoff = match ExponentialBackoffMaker::new(min, max, 0.0, rng) {
                Err(_) => return TestResult::discard(),
                Ok(backoff) => backoff,
            };
            let backoff = backoff.make_backoff();

            let delay = backoff.base();
            TestResult::from_bool(min == delay)
        }

        fn backoff_base(min_ms: u64, max_ms: u64, iterations: u32) -> TestResult {
            let min = time::Duration::from_millis(min_ms);
            let max = time::Duration::from_millis(max_ms);
            let rng = HasherRng::default();
            let mut backoff = match ExponentialBackoffMaker::new(min, max, 0.0, rng) {
                Err(_) => return TestResult::discard(),
                Ok(backoff) => backoff,
            };
            let mut backoff = backoff.make_backoff();

            backoff.iterations = iterations;
            let delay = backoff.base();
            TestResult::from_bool(min <= delay && delay <= max)
        }

        fn backoff_jitter(base_ms: u64, max_ms: u64, jitter: f64) -> TestResult {
            let base = time::Duration::from_millis(base_ms);
            let max = time::Duration::from_millis(max_ms);
            let rng = HasherRng::default();
            let mut backoff = match ExponentialBackoffMaker::new(base, max, jitter, rng) {
                Err(_) => return TestResult::discard(),
                Ok(backoff) => backoff,
            };
            let mut backoff = backoff.make_backoff();

            let j = backoff.jitter(base);
            if jitter == 0.0 || base_ms == 0 || max_ms == base_ms {
                TestResult::from_bool(j == time::Duration::default())
            } else {
                TestResult::from_bool(j > time::Duration::default())
            }
        }
    }
}